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Abstract

In practice, many machine learning (ML) problems come with constraints, and their applied domains

involve distributed sensitive data that cannot be shared with others, e.g., in healthcare. Collaborative

learning in such practical scenarios entails federated learning (FL) for ML problems with constraints, or

FL with constraints for short. Despite the extensive developments of FL techniques in recent years, these

techniques only deal with unconstrained FL problems or FL problems with simple constraints that are

amenable to easy projections. There is little work dealing with FL problems with general constraints. To

fill this gap, we take the first step toward building an algorithmic framework for solving FL problems with

general constraints. In particular, we propose a new FL algorithm for constrained ML problems based on

the proximal augmented Lagrangian (AL) method. Assuming convex objective and convex constraints plus

other mild conditions, we establish the worst-case complexity of the proposed algorithm. Our numerical

experiments show the effectiveness of our algorithm in performing Neyman-Pearson classification and

fairness-aware learning with nonconvex constraints, in an FL setting.

Keywords: Federated learning, constrained machine learning, augmented Lagrangian, complexity analysis,

imbalanced classification, fairness-aware learning

Mathematics Subject Classification: 65Y20 68W15 90C60

1 Introduction

Federated learning (FL) has emerged as a prominent distributed machine learning (ML) paradigm that

respects data privacy by design and has found extensive applications in diverse domains [24]. In FL, ML

models are trained without centralized training data: local clients hold their local data and never directly

share them with other clients or the central server. Given a global ML model to train, typical FL strategies

consist of repeated local computation and central aggregation: in each round, each local client performs local

computation of quantities of interest (e.g., local model parameters or derivatives) based on the local data,

and then the central server collects and aggregates the local results and updates the parameters of the global

ML model. Since the shared local results are usually highly nonlinear functions of local data, making reverse

engineering of local data unlikely, data privacy is naturally protected.

1.1 Federated learning for constrained machine learning problems

However, existing FL techniques are developed almost exclusively for unconstrained ML problems or, at best,

for ML problems with simple constraints that are amenable to easy projections, despite the growing list

of ML problems with general constraints—where constraints typically encode prior knowledge and desired

properties, e.g., robustness evaluation [17], fairness-aware learning [1], learning with imbalanced data [59],
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neural architecture search [79], topology optimization [10], physics-informed machine learning [41]. Here, we

sketch two quick examples.

Neyman-Pearson classification, or optimizing the false-positive rate with a controlled false-

negative rate Conventional binary classification assumes equal importance in both classes, so predictive

errors in both classes are counted equally. In numerous applications, such as medical diagnosis, misclassifying

one class (i.e., the priority class) is much more costly than misclassifying the other. The Neyman-Pearson

classification framework addresses this asymmetry in misclassification cost by explicitly controlling the error

rate in the priority class while optimizing that in the other [64, 61, 56, 63]:

min
θ

1

n0

n0∑
i=1

φ(fθ, zi,0) s.t.
1

n1

n1∑
i=1

φ(fθ, zi,1) ≤ r, (1)

where fθ is the trainable binary classifier parameterized by θ, φ is the loss function serving as a proxy to

classification error, and {zi,0}n0
i=1 and {zi,1}n1

i=1 are the training data from class 0 and 1, respectively. The

constraint imposes an upper bound on the error rate for class 1.

Fairness-aware learning Typical ML models are known to have biases toward the majority subgroups of

the input space [1, 9, 43]. For example, a disease diagnostic model that is trained on a male-dominant dataset

tends to predict much more accurately on the male subgroup than on the female subgroup. To counteract

such potential model biases, a natural way is to enforce fairness constraints to ensure that the performance of

the model on different subgroups is comparable [1, 9, 43]. A possible formulation for two-subgroup problems

is

min
θ

1

n′

n′∑
i=1

φ(fθ, zi) s.t. − δ ≤ 1

|S0|
∑
i∈S0

φ(fθ, zi)−
1

|S1|
∑
i∈S1

φ(fθ, zi) ≤ δ, (2)

where fθ is the ML model parameterized by θ, {zi} is the training set, and φ is the proxy loss function, similar

to the setup in Eq. (1). With S0 and S1 denoting the two subgroups of interest, the constraint imposes that

the performance disparity of fθ on S0 and S1 should not be larger than δ > 0, which is usually set close to 0.

Both examples are particularly relevant to biomedical problems, where class imbalance and subgroup

imbalance are prevalent. Moreover, there are strict regulations on the distribution and centralization of

biomedical data for research, e.g., the famous Health Insurance Portability and Accountability Act (HIPAA)

protection of patient privacy [49]. Together, these underscore the importance of developing FL techniques

for constrained ML problems, which is largely lacking: FL problems with only simple constraints that are

amenable to easy projections have been considered in [74, 65], and a small number of papers have tried to

mitigate class imbalance [62] and improve model fairness [13, 11, 14] through constrained optimization in FL

settings. However, these developments are specialized to their particular use cases and lack computational

guarantees for the feasibility and optimality of their solutions.

In this paper, we take the first step toward a general and rigorous FL framework for general constrained

ML problems. Consider the constrained ML problems in Eqs. (1) and (2) in an FL setting with n local clients,

where the ith client holds local data Zi and so the whole training set is the union Z1 ∪ · · · ∪ Zn. Since the

objectives and constraints in Eqs. (1) and (2) are in the finite-sum form, both examples are special cases of

the following finite-sum constrained optimization problem:

min
θ

{
n∑

i=1

fi(θ;Zi) + h(θ)

}
s.t.

n∑
i=1

c̃i(θ;Zi) ≤ 0.︸ ︷︷ ︸
local data coupled

(3)

Note that inside the constraint, the local data are coupled which necessarily lead to communication between

the local clients and the central server to allow the evaluation of the constraint function. To try to reduce such
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communication so that we can have more flexibility in algorithm design, we introduce decoupling variables

{si}, leading to an equivalent formulation:

min
θ,si

{
n∑

i=1

fi(θ;Zi) + h(θ)

}
s.t.

n∑
i=1

si ≤ 0,︸ ︷︷ ︸
no local data

c̃i(θ;Zi) ≤ si, 1 ≤ i ≤ n︸ ︷︷ ︸
local data decoupled

, (4)

which decouples the local data into n local constraints.

In this paper, we consider the following setup for FL with global and local constraints, a strict generalization

of Eq. (4):

min
w

{
n∑

i=1

fi(w;Zi) + h(w)

}
s.t. c0(w;Z0) ≤ 0︸ ︷︷ ︸

global constraint

, ci(w;Zi) ≤ 0, 1 ≤ i ≤ n︸ ︷︷ ︸
local constraints

. (5)

In contrast to unconstrained FL or FL with simple constraints amenable to easy projections studied in

existing literature, our focus lies on general convex constraints, where projections may or may not be easy to

compute. Here, we assume n local clients, each with a local objective fi(w;Zi) and a set of local constraints

ci(w;Zi) ≤ 0 (i.e., scalar constraints are vectorized) for i = 1, . . . , n. To stress the FL setting, we spell out

the dependency of these local objectives and local constraints on the local data Zi’s: these Zi’s are only

accessible to their respective local clients and should never be shared with other local clients or the central

server. Henceforth, we omit Zi’s in local objectives and constraints when no confusion arises. To allow

flexibility in modeling, we also include the global constraint c0(w;Z0) ≤ 0, with central data Z0 that is only

accessible by the central server. To facilitate the theoretical study of the algorithm that we develop, we further

assume that all objective and scalar constraint functions are convex, but we also verify the applicability of

our FL algorithm to classification problems with nonconvex fairness constraints in Section 5.2. To summarize,

our standing assumptions on top of Eq. (5) include

Assumption 0. We make the following assumption throughout this paper:

(a) The objective functions fi : Rd → R, 1 ≤ i ≤ n, and the mi scalar constraint functions inside ci : Rd → Rmi ,

0 ≤ i ≤ n, are convex and continuously differentiable, and h : Rd → (−∞,∞] is a simple closed convex

function.

(b) For each 1 ≤ i ≤ n, only the local objective fi and local constraint ci have access to the local data Zi,

which are never shared with other local clients and the central server. Only the central server has access

to the global data Z0,

1.2 Our contributions

This paper tackles Eq. (5) by adopting the sequential penalization approach, which involves solving a sequence

of unconstrained subproblems that combine the objective function with penalization of constraint violations.

In particular, we propose an FL algorithm based on the proximal augmented Lagrangian (AL) method

developed in [40]. In each iteration, the unconstrained subproblem is solved by an inexact solver based on

the alternating direction method of multipliers (ADMM) in a federated manner. We study the worst-case

complexity of the proposed algorithm assuming locally Lipschitz continuous gradients. Our main contributions

are highlighted below.

• We propose an FL algorithm (Algorithm 1) for solving Eq. (5) based on the proximal AL method. To the

best of our knowledge, the proposed algorithm is the first in solving general constrained ML problems in

an FL setting. Assuming locally Lipschitz continuous gradients and other mild conditions, we establish

its worst-case complexity to find an approximate optimal solution of Eq. (5). The complexity results are

entirely new in the literature.
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• We propose an ADMM-based inexact solver in Algorithm 2 to solve the unconstrained subproblems arising

in Algorithm 1. We equip this inexact solver with a newly introduced verifiable termination criterion and

establish its global linear convergence for solving the subproblems of Algorithm 1; these subproblems are

strongly convex and have locally Lipschitz continuous gradients.

• We perform numerical experiments to compare our proposed FL algorithm (Algorithm 1) with the

centralized proximal AL method (Algorithm 3) on binary Neyman-Pearson classification and classification

with nonconvex fairness constraints using real-world datasets (Section 5). Our numerical results demonstrate

that our FL algorithm can achieve solution quality comparable to that of the centralized proximal AL

method.

1.3 Related work

FL algorithms for unconstrained optimization FL has emerged as a cornerstone for privacy-preserved

learning since Google’s seminal work [42], and has found applications in numerous domains where the

protection of data privacy precludes centralized learning, including healthcare [55, 52, 53], finance [37],

Internet of things [44], and transportation [36]. FedAvg [42] is the first and also the most popular FL

algorithm to date. After FedAvg, numerous FL algorithms have been proposed to improve performance and

address practical issues, such as data heterogeneity [25, 32, 76], system heterogeneity [31, 68, 16], fairness [30],

communication efficiency [60, 26, 45], convergence [50], handling simple constraints [74, 65], incentives [66],

and hyperparameter tuning [72]. Since our FL algorithm relies on applying an inexact ADMM (Algorithm 2)

to solve subproblems, it is also worth mentioning that ADMM-based algorithms have been proposed to handle

FL problems [77, 16, 76] and optimization problems with many constraints in a distributed manner [15].

More FL algorithms and their applications can be found in the survey [29]. Despite the intensive research on

FL, existing algorithms focus primarily on unconstrained ML problems, versus constrained ML problems

considered in this paper.

Centralized algorithms for constrained optimization Recent decades have seen fruitful algorithm

developments for centralized constrained optimization in numerical optimization. In particular, there has been

a rich literature on AL methods for solving convex constrained optimization problems [4, 46, 51, 70, 28, 40, 39].

In addition, variants of AL methods have been developed to solve nonconvex constrained optimization problems

[22, 18, 6, 27, 33, 20, 21, 38]. Besides AL methods and their variants, sequential quadratic programming

methods [7, 12], trust-region methods [8, 54], interior point methods [67], and extra-point methods [23] have

been proposed to solve centralized constrained optimization problems.

Distributed algorithms for constrained optimization Developing distributed algorithms for con-

strained optimization has started relatively recently. To handle simple local constraints in distributed

optimization, [47, 34, 69] study distributed projected subgradient methods. For complicated conic local

constraints, [2, 3] develop distributed primal-dual algorithms. For distributed optimization with global

and local constraints, [78, 73] develop primal-dual projected subgradient algorithms. For an overview of

distributed constrained optimization, see [71]. Notice that FL is a special distributed optimization/learning

framework that protects data privacy by prohibiting the transfer of raw data from one client to another or to

a central server. These distributed algorithms for constrained optimization do not violate the FL restriction

and hence can be considered as FL algorithms, but they can only handle problems with simple global or

local constraints that are amenable to easy projection. Therefore, they cannot be applied directly to our

setup Eq. (5) with general global and local constraints.
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FL algorithms for constrained ML applications A small number of papers have developed FL

algorithms for particular constrained ML applications, such as learning with class imbalance and fairness-

aware ML. For example, [62, 11] propose FL algorithms to address class imbalance and subgroup imbalance,

respectively, by optimizing the Lagrangian function. [13] applies quadratic penalty method to deal with the

constraint in fairness-aware ML. In addition, [14] proposes an FL algorithm to tackle fairness-aware ML

based on optimizing the AL function. However, these developments are tailored to specific applications and

lack rigorous computational guarantees regarding the feasibility and optimality of their solutions. In contrast,

this paper focuses on developing algorithms with theoretical guarantees for FL with convex global and local

constraints. To the best of our knowledge, this work provides the first general FL framework for constrained

ML problems.

2 Notation and preliminaries

Throughout this paper, we let Rd and Rd
+ denote the d-dimensional Euclidean space and its nonnegative

orthant, respectively. We use ⟨·, ·⟩ to denote the standard inner product, ∥ · ∥ to denote the Euclidean norm

of a vector or the spectral norm of a matrix, and ∥ · ∥∞ to denote the ℓ∞-norm of a vector. For any vector

v ∈ Rd, [v]+ ∈ Rd is its nonnegative part (i.e., with all negative values set to zero). We adopt the standard

big-O notation O(·) to present complexity results; Õ(·) represents O(·) with logarithmic terms omitted.

Given a closed convex function h : Rd → (−∞,∞], ∂h and dom(h) denote the subdifferential and

domain of h, respectively. The proximal operator associated with h is denoted by proxh, that is, proxh(u) =

argminw{∥w − u∥2/2 + h(w)} for all u ∈ Rd. Given a continuously differentiable mapping ϕ : Rd → Rp, we

write the transpose of its Jacobian as ∇ϕ(w) = [∇ϕ1(w) · · · ∇ϕp(w)] ∈ Rd×p. We say that ∇ϕ is L-Lipschitz

continuous on a set Ω for some L > 0 if ∥∇ϕ(u) − ∇ϕ(v)∥ ≤ L∥u − v∥ for all u, v ∈ Ω. In addition, we

say that ∇ϕ is locally Lipschitz continuous on Ω if for any w ∈ Ω, there exist Lw > 0 and an open set Uw

containing w such that ∇ϕ is Lw-Lipschitz continuous on Uw.

Given a nonempty closed convex set C ⊆ Rd and any point u ∈ Rd, dist(u, C) and dist∞(u, C) stand for the

Euclidean distance and the Chebyshev distance from u to C, respectively. That is, dist(u, C) = minv∈C ∥u−v∥
and dist∞(u, C) = minv∈C ∥u− v∥∞. The normal cone of C at u ∈ C is denoted by NC(u). The Minkowski

sum of two sets B and C is defined as B + C := {b+ c : b ∈ B, c ∈ C}.
For ease of presentation, we let m :=

∑n
i=0mi and adopt the following notations throughout this paper:

f(w) =
n∑

i=1

fi(w), c(w) =

[
c0(w)

...
cn(w)

]
∈ Rm, µ =

[
µ0

...
µn

]
∈ Rm. (6)

Assumption 1. Throughout this paper, we assume that the strong duality holds for Eq. (5) and its dual

problem

sup
µ≥0

inf
w

{f(w) + h(w) + ⟨µ, c(w)⟩} . (7)

That is, both problems have optimal solutions and, moreover, their optimal values coincide.

Under Assumption 1, it is known that (w, µ) ∈ dom(h)×Rm
+ is a pair of optimal solutions of Eq. (5) and

Eq. (7) if and only if it satisfies (see, e.g., [40])

0 ∈

(
∇f(w) + ∂h(w) +∇c(w)µ

c(w)−NRm
+
(µ)

)
. (8)

In general, it is hard to find an exact optimal solution of Eq. (5) and Eq. (7). Thus, we are instead interested

in seeking an approximate optimal solution of Eq. (5) and Eq. (7) defined as follows.
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Definition 1. Given any ϵ1, ϵ2 > 0, we say (w, µ) ∈ dom(h)× Rm
+ is an (ϵ1, ϵ2)-optimal solution of Eq. (5)

and Eq. (7) if dist∞ (0,∇f(w) + ∂h(w) +∇c(w)µ) ≤ ϵ1 and dist∞(c(w),NRm
+
(µ)) ≤ ϵ2.

1

Here, the two different tolerances ϵ1, ϵ2 are used for measuring stationarity and feasibility violation,

respectively. This definition is consistent with the ϵ-KKT solution considered in [40] except that Definition 1

uses the Chebyshev distance rather than the Euclidean distance.

3 A proximal AL based FL algorithm for solving Eq. (5)

In this section, we propose an FL algorithm for solving Eq. (5) based on the proximal AL method. Specifically,

we describe this algorithm in Section 3.1, and then analyze its complexity results in Section 3.2.

Assumption 2. Throughout this section, we assume that

(a) The proximal operator for h can be exactly evaluated.

(b) The gradients ∇fi, 1 ≤ i ≤ n, and the transposed Jocobians ∇ci, 0 ≤ i ≤ n, are locally Lipschitz

continuous on Rd.

Assumption 2(b) clearly holds if all ∇fi’s and ∇ci’s are globally Lipschitz continuous on Rd, but this

assumption holds for a broad class of problems without global Lipschitz continuity on ∇fi’s and ∇ci’s.

For example, the quadratic penalty function of c(w) ≤ 0, namely ∥[c(w)]+∥2, only has a locally Lipschitz

continuous gradient even if ∇c is globally Lipschitz continuous on Rd (see Remark 8). In addition, the

gradient of a convex high-degree polynomial, such as ∥w∥4 with w ∈ Rd, is locally Lipschitz continuous but

not globally Lipschitz continuous on Rd.

3.1 Algorithm description

In this subsection, we describe a proximal AL-based FL algorithm (Algorithm 1) for finding an (ϵ1, ϵ2)-optimal

solution of Eq. (5) for prescribed ϵ1, ϵ2 ∈ (0, 1). This algorithm follows a framework similar to a centralized

proximal AL method described in Appendix D; see Section 11.K in [58] or [40] for more details of proximal

AL. At each iteration, it applies an inexact ADMM solver (Algorithm 2) to find an approximate solution

wk+1 to the proximal AL subproblem associated with Eq. (5):

min
w

{
ℓk(w) :=

n∑
i=1

fi(w) + h(w) +
1

2β

n∑
i=0

(
∥[µk

i + βci(w)]+∥2 − ∥µk
i ∥2
)

︸ ︷︷ ︸
augmented Lagrangian function

+
1

2β
∥w − wk∥2︸ ︷︷ ︸

proximal term

}
. (9)

Then, the multiplier estimates are updated according to the classical scheme:

µk+1
i = [µk

i + βci(w
k+1)]+, 0 ≤ i ≤ n.

Notice that the subproblem in Eq. (9) can be rewritten as

min
w

{
ℓk(w) :=

n∑
i=0

Pi,k(w) + h(w)

}
, (12)

1For unconstrained convex problems with differentiable objective minw f(w), a natural measure of convergence is ∥∇f(w)∥,
i.e., the distance between 0 and ∇f(w), as the optimality condition is ∇f(w) = 0. If the objective is nondifferentiable, we need

to use the notation of subdifferential, ∂f(w), which is a set for each w in general. In this case, the optimality condition reads

0 ∈ ∂f(w), and the measure of convergence is the distance between 0 and the subdifferent set dist(0, ∂f(w)) := minu∈∂f(w) ∥u∥.
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Algorithm 1 A proximal AL based FL algorithm for solving Eq. (5)

Input: tolerances ϵ1, ϵ2 ∈ (0, 1), w0 ∈ dom(h), µ0
i ≥ 0 for 0 ≤ i ≤ n, s̄ > 0, and β > 0.

1: for k = 0, 1, 2, . . . do

2: Set τk = s̄/(k + 1)2.

3: Call Algorithm 2 (see Section 4 below) with (τ, w̃0) = (τk, w
k) to find an approximate solution wk+1

4: to Eq. (12) in a federated manner such that

dist∞(0, ∂ℓk(w
k+1)) ≤ τk. (10)

5: Server update: The central server updates µk+1
0 = [µk

0 + βc0(w
k+1)]+.

6: Communication (broadcast): Each local client i, 1 ≤ i ≤ n, receives wk+1 from the central server.

7: Client update (local): Each local client i, 1 ≤ i ≤ n, updates µk+1
i = [µk

i + βci(w
k+1)]+.

8: Communication: Each local client i, 1 ≤ i ≤ n, sends ∥µk+1
i − µk

i ∥∞ to the central server.

9: Termination (server side): Output (wk+1, µk+1) and terminate the algorithm if

∥wk+1 − wk∥∞ + βτk ≤ βϵ1, max
0≤i≤n

{∥µk+1
i − µk

i ∥∞} ≤ βϵ2. (11)

10: end for

where Pi,k, 0 ≤ i ≤ n, are defined as

P0,k(w) :=
1

2β

(
∥[µk

0 + βc0(w)]+∥2 − ∥µk
0∥2
)
+

1

2(n+ 1)β
∥w − wk∥2, (13)

Pi,k(w) := fi(w) +
1

2β

(
∥[µk

i + βci(w)]+∥2 − ∥µk
i ∥2
)
+

1

2(n+ 1)β
∥w − wk∥2, ∀1 ≤ i ≤ n. (14)

When Algorithm 2 (see Section 4) is applied to solve Eq. (12), the local merit function Pi,k, constructed

from the local objective fi and local constraint ci, is handled by the respective local client i, while the

merit function P0,k is handled by the central server. We observe that Algorithm 1 with the subproblem

in Eq. (12) solved by Algorithm 2 meets the basic FL requirement: since local objective fi’s and local

constraint ci’s are handled by their respective local clients and the central server only performs aggregation

and handles the global constraint c0, no raw data are shared between the local clients and the central server,

i.e., Assumption 0(b) is obeyed.

Remark 2. We now make the following remarks on Algorithm 1.

(a) For hyperparameters of Algorithm 1,

• ϵ1, ϵ2 ∈ (0, 1) only depend on the numerical accuracy that the user aims to achieve;

• the initial iterates w0 and µ0
i , 1 ≤ i ≤ n, are usually randomly generated or set as a constant vector;

• s̄ > 0 controls the tolerance sequence {τk}k≥0 for the subproblems in Algorithm 1. These finite,

non-zero tolerances allow us to solve the subproblems inexactly but can still guarantee convergence,

hence saving computational costs. In particular, setting {τk}k≥0 to diminish rapidly towards zero on

the order of O(1/k2) can guarantee convergence of Algorithm 1. In practice, s̄ only needs to be set as

O(1).

(b) Compared to the centralized proximal AL developed in [40], we have made the following major changes

to arrive at Algorithm 1.

• add communication steps to allow dual updates in an FL manner;
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• to solve the subproblem, we cannot directly apply the accelerated gradient method (AGM) as in [40].

It is possible to develop an FL version of AGM by eagerly aggregating gradients from local clients, but

that induces heavy communication between clients and the central server. To address this, we first

reformulate the subproblem as a finite-sum problem and then propose an inexact ADMM solver to

solve it. The inexact ADMM solver allows multiple steps of local updates before aggregation of model

weights at the central server, hence it is communication friendly. We also propose a new stopping

criterion for the inexact ADMM (Algorithm 2). Detailed explanations can be found in Remark 9.

For ease of later reference, we refer to the update from wk to wk+1 as one outer iteration of Algorithm 1,

and call one iteration of Algorithm 2 for solving Eq. (9) one inner iteration of Algorithm 1. In the rest of

this section, we study the following measures of complexity for Algorithm 1.

• Outer iteration complexity, which measures the number of outer iterations of Algorithm 1 (one outer

iteration refers to one execution from Line 2 to Line 9 in Algorithm 1);

• Total inner iteration complexity, which measures the total number of iterations of Algorithm 2 that are

performed in Algorithm 1 (one inner iteration refers to one execution from Line 3 to Line 10 in Algorithm 2).

The following theorem concerns the output of Algorithm 1, whose proof is deferred to Appendix A.1.

Theorem 3 (output of Algorithm 1). If Algorithm 1 successfully terminates, its output (wk+1, µk+1) is

an (ϵ1, ϵ2)-optimal solution of Eq. (5).

3.2 Complexity analysis

In this subsection, we establish the outer and total inner iteration complexity for Algorithm 1. To proceed,

we let (w∗, µ∗) be any pair of optimal solutions of Eq. (5) and Eq. (7). First, we establish a lemma to show

that all iterates generated by Algorithm 1 are bounded. Its proof can be found in Appendix A.2.

Lemma 4 (bounded iterates of Algorithm 1). Suppose that Assumptions 0 to 2 hold. Let {wk}k≥0 be

all the iterates generated by Algorithm 1. Then we have wk ∈ Q1 for all k ≥ 0, where

Q1 := {w ∈ Rd : ∥w − w∗∥ ≤ r0 + 2
√
ns̄β} with r0 := ∥(w0, µ0)− (w∗, µ∗)∥, (15)

and w0, µ0, s̄, and β are inputs of Algorithm 1.

This boundedness result allows us to utilize the Lipschitz continuity on a bounded set to establish

the convergence rate for Algorithm 1. The following theorem states the worst-case complexity results of

Algorithm 1, whose proof is relegated to Appendix A.3.

Theorem 5 (complexity results of Algorithm 1). Suppose that Assumptions 0 to 2 hold. Then,

(a) the number of outer iteration of Algorithm 1 is at most O(max{ϵ−2
1 , ϵ−2

2 }); and

(b) the total number of inner iterations of Algorithm 1 is at most Õ(max{ϵ−2
1 , ϵ−2

2 }).

Remark 6. (a) To the best of our knowledge, Theorem 5 provides the first worst-case complexity results

for finding an approximate optimal solution of Eq. (5) in an FL framework; (b) The number of outer and

inner iterations of Algorithm 1 with detailed dependencies on the algorithm hyperparameters can be found

in Eqs. (48) and (84) in the proofs, respectively.
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3.3 Communication overheads

In the outer loop of Algorithm 1, a single communication round occurs after solving a proximal AL subproblem.

During this round, the central server sends the current weights wk+1 to all local clients, and each client

sends back the maximum change in their respective multipliers, measured by ∥µk+1
i − µk

i ∥∞, to the central

server. The communication overheads of the inner solver Algorithm 2 are discussed in Section 4.3. The

communication complexity of Algorithm 1 is Õ(max{ϵ−2
1 , ϵ−2

2 }).

4 An inexact ADMM for FL

In this section, we propose an inexact ADMM-based FL algorithm to solve the subproblem in Eq. (12) (the

same as Eq. (9)) for Algorithm 1. Before proceeding, we show that ∇Pi,k, 0 ≤ i ≤ n, are locally Lipschitz

continuous on Rd, whose proof is deferred to Appendix B.1.

Lemma 7 (local Lipschitz continuity of ∇Pi,k). Suppose that Assumptions 0 to 2 hold. Then the

gradients ∇Pi,k, 0 ≤ i ≤ n, are locally Lipschitz continuous on Rd.

Remark 8. It is worth noting that ∇Pi,k, 0 ≤ i ≤ n, are typically not globally Lipschitz continuous on Rd

even if ∇fi, 1 ≤ i ≤ n, and ∇ci, 0 ≤ i ≤ n, are globally Lipschitz continuous on Rd. For example, consider

c0(w) = ∥w∥2 − 1. By Eq. (13), one has that

∇P0,k(w) = 2[µk
0 + β(∥w∥2 − 1)]+w +

1

(n+ 1)β
(w − wk).

In this case, it is not hard to verify that ∇c0 is globally Lipschitz continuous on Rd, but ∇P0,k is not. Thus,

analyzing the complexity results for solving the subproblems in Eq. (12) using local Lipschitz conditions of

∇Pi,k, 0 ≤ i ≤ n, is reasonable.

Moreover, it is easy to see that Pi,k are strongly convex with the modulus 1/[(n+ 1)β] for all 0 ≤ i ≤ n

and all k ≥ 0.

Since both the local Lipschitz and the strong convexity (including its modulus) properties hold for all

k ≥ 0, and we need to solve the subproblem of the same form each k, below we drop k and focus on solving

the following model problem in an FL manner:

min
w

{
ℓ(w) :=

n∑
i=0

Pi(w;Zi) + h(w)

}
, (16)

where the data Zi’s are only accessible to their corresponding local/global functions Pi’s, necessitating FL.

We will drop Zi’s henceforth for simplicity. The model problem in Eq. (16) satisfies:

1. The functions Pi, 0 ≤ i ≤ n, are continuously differentiable, and moreover, ∇Pi, 0 ≤ i ≤ n, are locally

Lipschitz continuous on Rd;

2. The functions Pi, 0 ≤ i ≤ n, are strongly convex with a modulus σ > 0 on Rd, that is,

⟨∇Pi(u)−∇Pi(v), u− v⟩ ≥ σ∥u− v∥2, ∀u, v ∈ Rd, 0 ≤ i ≤ n. (17)

4.1 Algorithm description

In this subsection, we propose an inexact ADMM-based FL algorithm (Algorithm 2) for solving Eq. (16). To

make each participating client i handle their local objective Pi independently (see Section 3.1), we introduce

decoupling variables ui’s and obtain the following equivalent consensus reformulation for Eq. (16):

min
w,ui

{
n∑

i=1

Pi(ui) + P0(w) + h(w)

}
s.t. ui = w, 1 ≤ i ≤ n, (24)
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Algorithm 2 An inexact ADMM based FL algorithm for solving Eq. (16)

Input: tolerance τ ∈ (0, 1], q ∈ (0, 1), w̃0 ∈ dom(h), and ρi > 0 for 1 ≤ i ≤ n;

1: Set w0 = w̃0, and (u0i , λ
0
i , ũ

0
i ) = (w̃0,−∇Pi(w̃

0), w̃0 −∇Pi(w̃
0)/ρi) for 1 ≤ i ≤ n.

2: for t = 0, 1, 2, . . . do

3: Set εt+1 = qt;

4: Server update: The central server finds an approximate solution wt+1 to

min
w

{
φ0,t(w) := P0(w) + h(w) +

n∑
i=1

[ρi
2
∥ũti − w∥2

]}
(18)

5: such that dist∞(0, ∂φ0,t(w
t+1)) ≤ εt+1.

6: Communication (broadcast): Each local client i, 1 ≤ i ≤ n, receives wt+1 from the server.

7: Client update (local): Each local client i, 1 ≤ i ≤ n, finds an approximate solution ut+1
i to

min
ui

{
φi,t(ui) := Pi(ui) + ⟨λt

i, ui − wt+1⟩+ ρi
2
∥ui − wt+1∥2

}
(19)

8: such that ∥∇φi,t(u
t+1
i )∥∞ ≤ εt+1, and then updates

λt+1
i = λt

i + ρi(u
t+1
i − wt+1), (20)

ũt+1
i = ut+1

i + λt+1
i /ρi, (21)

ε̃i,t+1 = ∥∇φi,t(w
t+1)− ρi(w

t+1 − uti)∥∞. (22)

9: Communication: Each local client i, 1 ≤ i ≤ n, sends (ũt+1
i , ε̃i,t+1) back to the central server.

10: Termination (server side): Output wt+1 and terminate this algorithm if

εt+1 +

n∑
i=1

ε̃i,t+1 ≤ τ. (23)

11: end for

which allows each local client i to handle the local variable ui and the local objective function Pi while

imposing consensus constraints that force clients’ local parameters ui equal to the global parameter w. This

reformulation enables the applicability of an inexact ADMM that solves Eq. (24) in a federated manner. At

each iteration, an ADMM solver optimizes the AL function associated with Eq. (24):

LP (w, u, λ) :=
n∑

i=1

[
Pi(ui) + ⟨λi, ui − w⟩+ ρi

2
∥ui − w∥2

]
+ P0(w) + h(w) (25)

with respect to the variables w, u, and λ alternately, where u = [uT1 , . . . , u
T
n ]

T and [λT
1 , . . . , λ

T
n ]

T collect all

the local parameters and the multipliers associated with the consensus constraints, respectively. Specifically,

in iteration t, one performs

wt+1 ≈ argmin
w

LP (w, u
t, λt), (26)

ut+1 ≈ argmin
u

LP (w
t+1, u, λt), (27)

λt+1
i = λt

i + ρi(u
t+1
i − wt+1), ∀1 ≤ i ≤ n. (28)

By the definition of LP in Eq. (25), one can verify that the step in Eq. (26) is equivalent to Eq. (18), and

also the step in Eq. (27) can be computed in parallel, which corresponds to Eq. (19). Therefore, the ADMM
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updates naturally suit the FL framework, as the separable structure in Eq. (25) over the pairs {(ui, λi)}
enables the local update of (ui, λi) at each client i while w is updated by the central server.

Since the subproblems in Eq. (18) and Eq. (19) are strongly convex, their approximate solutions wt+1

and ut+1
i , 1 ≤ i ≤ n, can be found using a gradient-based algorithm with a global linear convergence rate [48].

Furthermore, the value ε̃i,t+1 in Eq. (22) serves as a measure of local optimality and consensus for client i.

By summing up ε̃i,t+1 for 1 ≤ i ≤ n and including εt+1, one can obtain a stationarity measure for the current

iterate (see (Eq. (23))), as presented in the following theorem. Its proof can be found in Appendix B.2.

Remark 9. We now make the following remarks on Algorithm 2.

(a) On hyperparameters of Algorithm 2,

• (τ, w̃0) is specified as (τk, w
k) at the kth iteration of Algorithm 1.

• From Eq. (18), ρi, 1 ≤ i ≤ n can be viewed as weighting parameters for aggregation. Therefore, it is

natural to set ρi = ami for 1 ≤ i ≤ n, where mi is the number of samples in client i and a is a global

constant. We follow this rule when setting ρi’s.

• q ∈ (0, 1) determines the tolerance sequence {εt+1}t≥0 for the subproblems in Eq. (18). These

tolerances in solving subproblems reduce computational costs. Setting {εt+1}t≥0 to rapidly diminish

toward zero rapidly at a geometric rate ensures the convergence of Algorithm 1. In practice, we

suggest setting q as O(1).

(b) The main innovations we have here compared to the existing literature on ADMM-based FL algorithms

(e.g, [77, 16, 76]) include:

• We establish the complexity results of an inexact ADMM-based FL algorithm under local Lipschitz

conditions, vs. global Lipschitz conditions in other work. Our complexity results can be found in

Theorem 12.

• We propose a novel and rigorous stopping criterion (Eq. (23)) that is easily verifiable, communication-

light, and compatible with the outer iterations (as our inexact ADMM FL algorithm serves as a

subproblem solver in our overall algorithm framework).

Theorem 10 (output of Algorithm 2). If Algorithm 2 terminates at some iteration T ≥ 0, then its output

wT+1 satisfies dist∞(0, ∂ℓ(wT+1)) ≤ τ .

Theorem 10 states that Algorithm 2 outputs a point that approximately satisfies the first-order optimality

condition of Eq. (5). In addition, it follows from Theorem 10 that Algorithm 2 with (τ, w̃0) = (τk, w
k) finds

an approximate solution wk+1 to Eq. (12) such that Eq. (10) holds.

4.2 Complexity analysis

In this subsection, we establish the iteration complexity for the inexact ADMM, namely, Algorithm 2. Recall

from Eq. (17) that Eq. (16) is strongly convex and thus has a unique optimal solution. We refer to this

optimal solution of Eq. (16) as w̃∗ throughout this section. The following lemma shows that all the iterates

generated by Algorithm 2 lie in a compact set. Its proof can be found in Appendix B.3.

Lemma 11 (bounded iterates of Algorithm 2). Suppose that Assumptions 0 to 2 hold and let

{ut+1
i }1≤i≤n,t≥0 and {wt+1}t≥0 be all the iterates generated by Algorithm 2. Then it holds that all these

iterates stay in a compact set Q, where

Q :=

{
v : ∥v − w̃∗∥2 ≤ n+ 1

σ2(1− q2)
+

1

σ

n∑
i=1

(
ρi∥w̃∗ − w̃0∥2 + 1

ρi
∥∇Pi(w̃

∗)−∇Pi(w̃
0)∥2

)}
. (29)
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The iteration complexity of Algorithm 2 is established in the following theorem, whose proof is relegated

to Appendix B.4.

Theorem 12 (iteration complexity of Algorithm 2). Suppose that Assumptions 0 to 2 hold. Then

Algorithm 2 terminates in at most O(| log τ |) iterations.

Remark 13. We now make the following remarks on the complexity results in Theorem 12.

(a) Algorithm 2 enjoys a global linear convergence rate when solving the problem in Eq. (16). The result

generalizes classical convergence results for ADMM in the literature, which typically require a strongly

convex objective with globally Lipschitz continuous gradient (e.g., see [35]). In contrast, our result is the

first to establish a global linear convergence of an inexact ADMM assuming a strongly convex objective

with only a locally Lipschitz continuous gradient.

(b) The number of iterations of Algorithm 2 with dependencies on all the algorithm hyperparameters can

be found in Eq. (74) in the proofs.

(c) The general research on complexity analysis for optimization algorithms under local Lipschitz assumptions

is relatively new. For example, [39] proposes accelerated gradient methods for convex optimization

problems with locally Lipschitz continuous gradients, and [75] proposes accelerated gradient methods

for nonconvex optimization problems with locally Lipschitz continuous gradients.

4.3 Communication overheads

In each iteration of Algorithm 2, a single communication round happens between the clients and the central

server. During this round, the central server transmits the global weight wt+1 to all clients, and subsequently

each local client performs multiple local updates to solve a local subproblem and then sends the updated

local weights ũt+1
i and a local stationarity measure ε̃i,t+1 back to the central server. The communication

complexity of each call of Algorithm 2 is O(| log τ |).

5 Numerical experiments

Here, we conduct numerical experiments to evaluate the performance of our proposed FL algorithm (Algo-

rithm 1). Specifically, we benchmark our algorithm against a centralized proximal AL method (cProx-AL,

described in Algorithm 3) on a convex Neyman-Pearson classification problem (Section 5.1) and a fair-

aware learning problem (Section 5.2) with real-world datasets, and further on linear-equality-constrained

quadratic programming problems with simulated data (Appendix E.2). All experiments are carried out

on a Windows system with an AMD EPYC 7763 64-core processor, and all algorithms are implemented

in Python. The code to implement the proposed algorithm on these numerical examples is available at

https://github.com/PL97/Constr_FL.

5.1 Neyman-Pearson classification

In this subsection, we consider the Neyman-Pearson classification problem:

min
w

1

n

n∑
i=1

1

mi0

mi0∑
j=1

ϕ(w; (x
(i0)
j , 0)) s.t.

1

mi1

mi1∑
j=1

ϕ(w; (x
(i1)
j , 1)) ≤ ri, 1 ≤ i ≤ n, (30)

where {x(i0)j }1≤j≤mi0 and {x(i1)j }1≤j≤mi1 are the sets of samples at client i associated with labels 0 and 1,

respectively, and ϕ is the binary logistic loss [19]

ϕ(w; (x, y)) = −ywTx+ log(1 + ew
T x), y ∈ {0, 1}. (31)
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Table 1: Numerical results for solving Eq. (30) using our algorithm vs. using cProx-AL. Inside the parentheses

are the respective standard deviations over 10 random trials. For feasibility, we include the mean and

maximum losses for class 1 among all local clients.

dataset n

objective value (loss for class 0) feasibility (loss for class 1 (≤ 0.2))

Algorithm 1 cProx-AL relative difference Algorithm 1 cProx-AL

mean max mean max

breast-cancer-wisc

1 0.27 (1.52e-04) 0.27 (3.02e-05) 7.09e-04 (2.02e-04) 0.20 (1.80e-07) 0.20 (1.80e-07) 0.20 (1.84e-08) 0.20 (1.84e-08)

5 0.34 (4.50e-02) 0.33 (4.55e-02) 1.15e-02 (5.17e-03) 0.19 (7.33e-06) 0.20 (1.08e-06) 0.19 (1.13e-04) 0.20 (1.72e-05)

10 0.37 (1.08e-01) 0.37 (1.08e-01) 3.92e-04 (2.76e-04) 0.17 (1.15e-05) 0.20 (6.05e-09) 0.17 (1.14e-05) 0.20 (2.95e-08)

20 0.46 (2.12e-01) 0.45 (2.12e-01) 3.43e-02 (2.91e-02) 0.16 (3.52e-05) 0.20 (3.76e-06) 0.16 (7.03e-06) 0.20 (7.70e-08)

adult-a

1 0.73 (2.19e-04) 0.73 (1.25e-04) 2.24e-04 (3.46e-04) 0.20 (6.30e-07) 0.20 (6.30e-07) 0.20 (1.73e-06) 0.20 (1.73e-06)

5 0.74 (1.03e-02) 0.74 (1.03e-02) 4.25e-03 (7.44e-04) 0.20 (2.14e-04) 0.20 (2.80e-04) 0.20 (1.21e-05) 0.20 (2.28e-06)

10 0.77 (1.98e-02) 0.77 (1.98e-02) 2.69e-03 (3.24e-03) 0.19 (6.41e-05) 0.20 (9.76e-05) 0.19 (2.00e-05) 0.20 (1.23e-05)

20 0.78 (2.86e-02) 0.79 (2.81e-02) 1.13e-02 (4.11e-03) 0.18 (6.40e-04) 0.20 (6.59e-05) 0.18 (1.96e-05) 0.20 (3.19e-06)

monks-1

1 1.58 (7.61e-05) 1.58 (7.50e-05) 1.39e-05 (1.09e-05) 0.20 (1.09e-07) 0.20 (1.09e-07) 0.20 (3.01e-07) 0.20 (3.01e-07)

5 1.65 (8.39e-02) 1.65 (8.41e-02) 2.08e-04 (1.84e-04) 0.19 (6.39e-05) 0.20 (5.39e-05) 0.19 (5.04e-06) 0.20 (5.60e-07)

10 1.71 (1.18e-01) 1.71 (1.18e-01) 4.59e-04 (3.32e-04) 0.18 (3.98e-05) 0.20 (4.46e-05) 0.18 (6.44e-06) 0.20 (1.60e-06)

20 1.81 (1.49e-01) 1.79 (1.60e-01) 1.78e-02 (1.38e-02) 0.17 (1.68e-04) 0.20 (2.24e-04) 0.17 (4.60e-06) 0.20 (1.62e-06)

Figure 1: Convergence behavior of local objective and local feasibility in one random trial over the outer

iterations of Algorithm 1 on three real-world datasets. The solid blue and brown lines indicate the mean

local objective and the mean local feasibility over all clients, respectively. The blue and the brown areas

indicate the cross-client variations of local objectives and local feasibility, respectively. The dashed black line

indicates the feasibility threshold.

Then, both the objective and the constraints in Eq. (30) are convex. We consider three real-world datasets,

namely ‘breast-cancer-wisc’, ‘adult-a’, and ‘monks-1’, from the UCI repository2 and described in Appendix E.1.

For each dataset, we perform the Neyman-Pearson classification that minimizes the loss of classification for

class 0 (majority) while ensuring that the loss for class 1 (minority) is less than a threshold ri = 0.2. To

simulate the FL setting, we divide each dataset into n folds, mimicking local clients, each holding the same

amount of data with equal ratios of the two classes.

We apply Algorithm 1 and cProx-AL (Algorithm 3) to find a (10−3, 10−3)-optimal solution of Eq. (30).

We run 10 trials of Algorithm 1 and cProx-AL. For each run, both algorithms have the same initial point w0,

randomly chosen from the unit Euclidean sphere. We set the other parameters for Algorithm 1 and cProx-AL

as µ0
i = (0, . . . , 0)T ∀0 ≤ i ≤ n, s̄ = 0.001 and β = 300. We also set ρi = 0.01 ∀1 ≤ i ≤ n for Algorithm 2.

Comparing the objective value and feasibility of solutions achieved by Algorithm 1 and cProx-AL in

Table 1, we see that both algorithms can yield solutions of similar quality. Given the small standard

deviations, we observe that the convergence behavior of Algorithm 1 remains stable across 10 trial runs.

These observations demonstrate the ability of Algorithm 1 to reliably solve Eq. (30) in the FL setting without

compromising solution quality. From Fig. 1, we observe that Algorithm 1 consistently achieves feasibility for

2see https://archive.ics.uci.edu/datasets
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Table 2: Numerical results for Eq. (32) using our algorithm vs. using cProx-AL. Inside the parentheses are

the respective standard deviations over 10 random trials. For feasibility, we include the mean and maximum

loss disparities (absolute difference between losses for two subgroups) among all clients and the central server.

n

objective value feasibility (loss disparity (≤ 0.1))

Algorithm 1 cProx-AL relative difference Algorithm 1 cProx-AL

mean max mean max

1 0.37 (9.83e-05) 0.37 (4.14e-05) 1.97e-03 (2.53e-04) 0.10 (1.14e-04) 0.10 (1.36e-04) 0.10 (3.69e-06) 0.10 (5.38e-06)

5 0.37 (3.99e-03) 0.37 (4.05e-03) 1.86e-03 (4.69e-04) 0.09 (5.34e-05) 0.10 (7.51e-05) 0.09 (3.68e-05) 0.10 (4.36e-06)

10 0.37 (6.39e-03) 0.37 (6.52e-03) 2.39e-03 (8.40e-04) 0.08 (1.68e-04) 0.10 (2.15e-05) 0.08 (1.52e-04) 0.10 (6.56e-06)

20 0.38 (9.46e-03) 0.37 (9.86e-03) 4.61e-03 (2.43e-03) 0.08 (9.75e-05) 0.10 (1.01e-04) 0.08 (4.90e-05) 0.10 (6.06e-06)

all local constraints while also minimizing all the local objectives.

5.2 Classification with fairness constraints

In this subsection, we consider fairness-aware learning with global and local fairness constraints:

min
w

1

n

n∑
i=1

1

mi

mi∑
j=1

ϕ(w; z
(i)
j ) s.t. − ri ≤

1

m̃i

m̃i∑
j=1

ϕ(w; z̃
(i)
j )− 1

m̂i

m̂i∑
j=1

ϕ(w; ẑ
(i)
j ) ≤ ri, 0 ≤ i ≤ n. (32)

Here, {z(i)j = (x
(i)
j , y

(i)
j ) ∈ Rd × {0, 1} : i = 0, . . . , n, j = 1, . . . ,mi} is the training set, where i indexes

the central server/local clients. For each i = 0, . . . , n, the dataset {z(i)j }1≤j≤mi is further divided into

two subgroups {z̃(i)j }1≤j≤m̃i and {ẑ(i)j }1≤j≤m̂i
based on certain subgroup attributes. The constraints with

i = 1, . . . , n refer to local constraints at client i, while the constraints with i = 0 refer to global constraints at

the central server.

We choose ϕ as the binary logistic loss defined in Eq. (31), leading to nonconvex constraints in Eq. (32).

For the real-world dataset, we consider ‘adult-b’3: each sample in this dataset has 39 features and one binary

label. To simulate the FL setting, we divide the 22, 654 training samples from the ‘adult-b’ dataset into n

folds and distribute them to n local clients. The central server holds the 5, 659 test samples from the ‘adult-b’

dataset. Note that although we have taken both the “training” and “test” samples from the ‘adult-b’ dataset

here, these samples are used to simulate our local samples and central samples, respectively. The focus here is

to test optimization performance, not generalization—we do not have a test step, unlike in typical supervised

learning.

We apply Algorithm 1 and cProx-AL (Algorithm 3) to find a (10−3, 10−3)-optimal solution of Eq. (32).

We run 10 trials of Algorithm 1 and cProx-AL. For each run, both algorithms have the same initial point w0,

randomly chosen from the unit Euclidean sphere. We set the other parameters for Algorithm 1 and cProx-AL

as µ0
i = (0, . . . , 0)T ∀0 ≤ i ≤ n, s̄ = 0.001 and β = 10. We also set ρi = 108 ∀1 ≤ i ≤ n for Algorithm 2.

Comparing the objective value and feasibility of solutions achieved by Algorithm 1 and cProx-AL in

Table 2 reveals that Algorithm 1 and cProx-AL can produce solutions of similar quality. Given the small

standard deviations, we observe that the convergence behavior of Algorithm 1 remains stable across 10 trial

runs. These observations demonstrate the ability of Algorithm 1 to reliably solve Eq. (32) in the FL setting

without compromising solution quality. It also suggests the potential of our algorithm in solving FL problems

with nonconvex constraints. From Fig. 2, we see that our proposed method consistently achieves feasibility

for all local and global constraints while also minimizing all the local objectives.

3This dataset can be found in https://github.com/heyaudace/ml-bias-fairness/tree/master/data/adult.
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Figure 2: Convergence of local objective, local feasibility, and the feasibility for global constraints in one

random trial over the outer iterations of Algorithm 1. The solid blue and brown lines indicate the mean local

objective and the mean local feasibility over all clients, respectively. The blue and brown areas indicate the

cross-client variations of local objectives and local feasibility, respectively. The dashdot blue line indicates

the feasibility for global constraints. The dashed black line indicates the feasibility threshold.

6 Concluding remarks

In this paper, we propose an FL algorithm for solving general constrained ML problems based on the proximal

AL method. We analyze the worst-case iteration complexity of the proposed algorithm, assuming convex

objective and convex constraints with locally Lipschitz continuous gradients. Finally, we perform numerical

experiments to assess the performance of the proposed algorithm for constrained classification problems,

using real-world datasets. The numerical results clearly demonstrate the practical efficacy of our proposed

algorithm. Since our work is the first of its kind, there are numerous possible future directions. For example,

one could try to extend our FL algorithms to allow partial client participation and stochastic solvers at local

clients. In addition, developing FL algorithms for general constrained ML with convergence guarantees in

nonconvex settings remains largely open. Lastly, constrained FL with a fixed iteration and communication

budget, especially stringent ones, is a very useful but challenging future research topic.
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Appendix

In Appendices A to C, we provide proofs of the main results in Sections 3 and 4. Appendix D presents

a proximal AL method for centralized constrained optimization. In Appendix E, we include some extra

numerical results.
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A Proofs of Theorem 3, Lemma 4, and Theorem 5(a)

First, we set up the technical tools necessary for the proof, following [40]. With the abbreviations in Eq. (6),

we define the Lagrangian function associated with Eqs. (5) and (7) as

l(w, µ) =


f(w) + h(w) + ⟨µ, c(w)⟩ if w ∈ dom(h) and µ ≥ 0,

−∞ if w ∈ dom(h) and µ ̸≥ 0,

∞ if w ̸∈ dom(h),

Then, one can verify that

∂l(w, µ) =


(
∇f(w) + ∂h(w) +∇c(w)µ

c(w)−NRm
+
(µ)

)
if w ∈ dom(h) and µ ≥ 0,

∅ otherwise.

(33)

We also define a set-valued operator T associated with Eqs. (5) and (7):

T : (w, µ) → {(u, ν) ∈ Rd × Rm : (u,−ν) ∈ ∂l(w, µ)}, ∀(w, µ) ∈ Rd × Rm, (34)

which is maximally monotone (see, e.g., Section 2 of [57]). Finding a KKT solution of Eq. (5) can be viewed

as solving the monotone inclusion problem [57]:

Find (w, µ) ∈ Rd × Rm such that (0, 0) ∈ T (w, µ). (35)

Furthermore, applying the proximal AL method to solve Eq. (5) is equivalent to applying the proximal point

algorithm (PPA) to solve this monotone inclusion problem [57, 5], that is,

wk+1 = argmin
w

ℓk(w), µk+1 = [µk + βc(wk+1)]+, ⇐⇒ (wk+1, µk+1) = J (wk, µk), ∀k ≥ 0, (36)

where (w0, µ0) ∈ dom(h)× Rm
+ and J is the resolvent of T defined as

J := (I + βT )−1 (37)

with I being the identity operator. When the argminw ℓk(w) subproblem is only solved up to approximate

stationarity, that is, dist∞(0, ∂ℓk(w
k+1)) ≤ τk as in our Algorithm 1, the error τk will propagate to the next

iterate that we obtain. This is quantitatively captured by the following result.

Lemma 14 (adaptation of Lemma 5 of [40]). Suppose that Assumptions 0 to 2 hold. Let {(wk, µk)}k≥0

be generated by Algorithm 1. Then for any k ≥ 0, we have

∥(wk+1, µk+1)− J (wk, µk)∥ ≤ β
√
nτk,

where J is the resolvent of T defined in Eq. (37).

Proof. Notice from Eq. (10) that dist(0, ∂ℓk(w
k+1)) ≤

√
ndist∞(0, ∂ℓk(w

k+1)) ≤
√
nτk. By this and Lemma 5

of [40], the conclusion of this lemma holds.

A.1 Proof of Theorem 3

Proof of Theorem 3. Notice from Eqs. (6) and (9) that

ℓk(w) = f(w) + h(w) +
1

2β

(
∥[µk + βc(w)]+∥2 − ∥µk∥2

)
+

1

2β
∥w − wk∥2.
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By this, Eq. (33), and the fact that µk+1 = [µk + βc(wk+1)]+, one has

∂ℓk(w
k+1)− 1

β
(wk+1 − wk) = ∇f(wk+1) + ∂h(wk+1) +∇c(wk+1)[µk + βc(wk+1)]+

= ∇f(wk+1) + ∂h(wk+1) +∇c(wk+1)µk+1 = ∂wl(w
k+1, µk+1). (38)

Notice that

µk+1 = [µk + βc(wk+1)]+ = argmin
µ∈Rm

+

1

2
∥µ− (µk + βc(wk+1))∥2.

By the optimality condition of this projection, we have

0 ∈ µk+1 − (µk + βc(wk+1)) +NRm
+
(µk+1),

which together with Eq. (33) implies that

1

β
(µk+1 − µk) ∈ ∂µl(w

k+1, µk+1). (39)

In view of this, Eqs. (10), (11) and (38), we can see that

dist∞(0, ∂wl(w
k+1, µk+1))

Eq. (38)

≤ dist∞(0, ∂ℓk(w
k+1)) +

1

β
∥wk+1 − wk∥∞

Eq. (10)

≤ τk +
1

β
∥wk+1 − wk∥∞

Eq. (11)

≤ ϵ1,

dist∞(0, ∂µl(w
k+1, µk+1))

Eq. (39)

≤ 1

β
∥µk+1 − µk∥∞

Eq. (11)

≤ ϵ2.

These along with Eq. (33) and Definition 1 imply that (wk+1, µk+1) is an (ϵ1, ϵ2)-KKT solution of Eq. (5),

which proves this theorem as desired.

A.2 Proof of Lemma 4

Define

wk
∗ := argmin

w
ℓk(w), µk

∗ := [µk + βc(wk
∗)]+, ∀k ≥ 0, (40)

which, by Eq. (36), is equivalent to

(wk
∗ , µ

k
∗) = J (wk, µk). (41)

Recall that (w∗, µ∗) is assumed to be any pair of optimal solutions to Eq. (5) and Eq. (7). Toward the proof,

we first present an intermediate result, which mostly follows the fact that J is firmly nonexpansive.

Lemma 15. Suppose that Assumptions 0 to 2 hold. Let {(wk, µk)}k≥0 be generated by Algorithm 1. Let

(wk
∗ , µ

k
∗) be defined in Eq. (40) for all k ≥ 0. Then the following relations hold.

∥(wk, µk)− (wk
∗ , µ

k
∗)∥2 + ∥(wk

∗ , µ
k
∗)− (w∗, µ∗)∥2 ≤ ∥(wk, µk)− (w∗, µ∗)∥2, ∀k ≥ 0, (42)

∥(wk, µk)− (w∗, µ∗)∥ ≤ ∥(w0, µ0)− (w∗, µ∗)∥+ β
√
n

k−1∑
j=0

τj , ∀k ≥ 0. (43)

Proof. Since (w∗, µ∗) is a solution to the monotone inclusion problem Eq. (35), we have

(0, 0) ∈ T (w∗, µ∗), and (w∗, µ∗) = J (w∗, µ∗). (44)
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Moreover, since T is maximally monotone, its resolvent J is firmly nonexpansive (see, e.g., Corollary 23.9

of [5]), that is, ∥J (w, µ) − J (w′, µ′)∥2 + ∥(I − J )(w, µ) − (I − J )(w′, µ′)∥2 ≤ ∥(w, µ) − (w′, µ′)∥2 for any

feasible pairs (w, µ) and (w′, µ′). Using Eqs. (41) and (44), we obtain that

∥(wk, µk)− (wk
∗ , µ

k
∗)∥2 + ∥(wk

∗ , µ
k
∗)− (w∗, µ∗)∥2

Eqs. (41)and (44)
= ∥(I − J )(wk, µk)− (I − J )(w∗, µ∗)∥2 + ∥J (wk, µk)− J (w∗, µ∗)∥2

≤ ∥(wk, µk)− (w∗, µ∗)∥2. (firm nonexpansiveness of J )

Hence, Eq. (42) holds as desired.

Now we prove Eq. (43). It suffices to consider the case where k ≥ 1. We have

∥(wk, µk)− (w∗, µ∗)∥ ≤ ∥(wk, µk)− J (wk−1, µk−1)∥+ ∥J (wk−1, µk−1)− J (w∗, µ∗)∥
≤ β

√
nτk−1 + ∥(wk−1, µk−1)− (w∗, µ∗)∥, (45)

where we have invoked Lemma 14 and the nonexpansiveness of J to obtain the final upper bound. Repeatedly

applying Eq. (45) for iterates (w1, µ1) through (wk−1, µk−1), we have

β
√
nτk−1 + ∥(wk−1, µk−1)− (w∗, µ∗)∥ ≤ β

√
n

k−1∑
j=0

τj + ∥(w0, µ0)− (w∗, µ∗)∥, (46)

completing the proof.

Proof of Lemma 4. Notice from Algorithm 1 that τk = s̄/(k + 1)2 for all k ≥ 0. Therefore, one has∑∞
j=0 τj ≤ 2s̄. In view of this, Eq. (15), and Lemma 15, we observe that

max{∥wk − w∗∥, ∥µk − µ∗∥, ∥wk − wk
∗∥, ∥wk

∗ − w∗∥} ≤ r0 + 2
√
ns̄β, ∀k ≥ 0. (47)

where r0 is defined in Eq. (15), and β and s̄ are inputs of Algorithm 1. Eq. (47) implies that wk ∈ Q1 for all

k ≥ 0, completing the proof.

A.3 Proof of Theorem 5(a)

To prove Theorem 5(a), we first present a general technical lemma on the convergence rate of an inexact

PPA applied to monotone inclusion problems.

Lemma 16 (restatement of Lemma 3 of [40]). Let T̃ : Rp ⇒ Rq be a maximally monotone operator

and z∗ ∈ Rp such that 0 ∈ T̃ (z∗). Let {zk} be a sequence generated by an inexact PPA, starting with z0 and

obtaining zk+1 by approximately evaluating J̃ (zk) such that

∥zk+1 − J̃ (zk)∥ ≤ ek

for some β > 0 and ek ≥ 0, where J̃ := (I + βT̃ )−1 and I is the identity operator. Then, for any K ≥ 1, we

have

min
K≤k≤2K

∥zk+1 − zk∥ ≤

√
2
(
∥z0 − z∗∥+ 2

∑2K
k=0 ek

)
√
K + 1

.

Proof of Theorem 5(a). Observe that Algorithm 1 terminates when two consecutive iterates (wk+1, µk+1)

and (wk, µk) are close. We use this observation and Lemmas 14 and 16 to derive the maximum number of

outer iterations of Algorithm 1.
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Recall that
∑∞

j=0 τj ≤ 2s̄. It follows from Lemmas 14 and 16 that

min
K≤k≤2K

1

β
∥(wk+1, µk+1)− (wk, µk)∥ ≤

√
2
(
∥(w0, µ0)− (w∗, µ∗)∥+ 2

√
nβ
∑∞

j=0 τj

)
β
√
K + 1

≤
√
2
(
∥(w0, µ0)− (w∗, µ∗)∥+ 4

√
ns̄β

)
β
√
K + 1

=

√
2 (r0 + 4

√
ns̄β)

β
√
K + 1

,

which then implies that

min
K≤k≤2K

{
τk +

1

β
∥wk+1 − wk∥∞

}
≤ s̄

(K + 1)2
+

√
2 (r0 + 4

√
ns̄β)

β
√
K + 1

≤

[
s̄+

√
2 (r0 + 4

√
ns̄β)

β

]
1√

K + 1
,

min
K≤k≤2K

1

β
∥µk+1 − µk∥∞ ≤

√
2 (r0 + 4

√
ns̄β)

β
√
K + 1

.

We see from these and the termination criterion in Eq. (11) that the number of outer iterations of Algorithm 1

is at most

Kϵ1,ϵ2 :=

[
s̄+

√
2(r0 + 4

√
ns̄β)

β

]2
max{ϵ−2

1 , ϵ−2
2 } = O(max{ϵ−2

1 , ϵ−2
2 }). (48)

Hence, Theorem 5(a) holds as desired.

B Proofs of the main results in Section 4

Throughout this section, we let (w̃∗, u∗) be the optimal solution of Eq. (24), and λ∗ be the associated

Lagrangian multiplier. Recall from the definition of ũ0i in Algorithm 2 and Eq. (21) that

ũti = uti + λt
i/ρi, ∀1 ≤ i ≤ n, t ≥ 0. (49)

B.1 Proof of Lemma 7

For notational convenience, write f0(w) ≡ 0. Then, by Eqs. (13) and (14), one can verify that

∇Pi,k(w) = ∇fi(w) +∇ci(w)[µ
k
i + βci(w)]+ +

1

(n+ 1)β
(w − wk), ∀0 ≤ i ≤ n. (50)

Proof of Lemma 7. Fix an arbitrary w ∈ Rd and a bounded open set Uw containing w. We suppose that

∇fi is Lw,1-Lipschitz continuous on Uw, and ∇ci is Lw,2-Lipschitz continuous on Uw. Also, let Uw,1 =

supw∈Uw
∥ci(w)∥ and Uw,2 = supw∈Uw

∥∇ci(w)∥. By Eqs. (13), (14) and (50)) one has for each 0 ≤ i ≤ n and

u, v ∈ Uw that

∥∇Pi,k(u)−∇Pi,k(v)∥
Eq. (50)

≤ ∥∇fi(u)−∇fi(v)∥+ ∥∇ci(u)−∇ci(v)∥∥[µk
i + βci(u)]+∥

+ ∥[µk
i + βci(u)]+ − [µk

i + βci(v)]+∥∥∇ci(v)∥+
1

(n+ 1)β
∥u− v∥

≤ Lw,1∥u− v∥+ (∥µk
i ∥+ βUw,1)Lw,2∥u− v∥

+ β∥ci(u)− ci(v)∥∥∇ci(v)∥+
1

(n+ 1)β
∥u− v∥

≤
[
Lw,1 + (∥µk

i ∥+ βUw,1)Lw,2 + βU2
w,2 +

1

(n+ 1)β

]
∥u− v∥.

Therefore, ∇Pi,k(u) is locally Lipschitz continuous on Rd, and the conclusion holds as desired.
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B.2 Proof of Theorem 10

Proof of Theorem 10. In view of the termination criterion Eq. (23), it suffices to show that

dist∞(0, ∂ℓ(wT+1)) ≤ εT+1 +
n∑

i=1

ε̃i,T+1.

By the definition of ℓ in Eq. (16), one has that

∂ℓ(wT+1) =

n∑
i=0

∇Pi(w
T+1) + ∂h(wT+1). (51)

In addition, notice from Eqs. (18), (19) and (49) that

∂φ0,T (w
T+1) = ∇P0(w

T+1) +
n∑

i=1

ρi(w
T+1 − ũTi ) + ∂h(wt+1)

= ∇P0(w
T+1) +

n∑
i=1

[ρi(w
T+1 − uTi )− λT

i ] + ∂h(wT+1),

∇φi,T (w
T+1) = ∇Pi(w

T+1) + λT
i , ∀1 ≤ i ≤ n.

Combining these with Eq. (51), we obtain that

∂ℓ(wT+1) = ∂φ0,T (w
T+1) +

n∑
i=1

[∇φi,T (w
T+1)− ρi(w

T+1 − uTi )],

which together with dist∞(0, ∂φ0,T (w
T+1)) ≤ εT+1 (see Algorithm 2 and Eq. (22)) implies that

dist∞(0, ∂ℓ(wT+1)) ≤ dist∞(0, ∂φ0,T (w
T+1)) +

n∑
i=1

∥∇φi,T (w
T+1)− ρi(w

T+1 − uTi )∥∞

≤ εT+1 +
n∑

i=1

ε̃i,T+1,

as desired.

B.3 Proof of Lemma 11

To prove Lemma 11, we use convergence analysis techniques for ADMM to show that the distances between

iterates {uki }1≤i≤n and wk and the optimal solution w̃∗ are controlled by the distance between the initial

iterate w̃0 and w̃∗. To the best of our knowledge, such boundedness results without assuming global Lipschitz

continuity are entirely new in the literature on ADMM.

Proof of Lemma 11. From the optimality conditions and stopping criteria for Eq. (18) and Eq. (19), there

exist et+1
i ’s for 0 ≤ i ≤ n with ∥et+1

i ∥∞ ≤ εt+1 and ht+1 ∈ ∂h(wt+1) so that:

et+1
0 = ∇P0(w

t+1) + ht+1 +

n∑
i=1

ρi(w
t+1 − ũti)

Eq. (49)
= ∇P0(w

t+1) + ht+1 +

n∑
i=1

[ρi(w
t+1 − uti)− λt

i]

Eq. (20)
= ∇P0(w

t+1) + ht+1 +

n∑
i=1

[ρi(u
t+1
i − uti)− λt+1

i ] (52)
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and

et+1
i = ∇φi,t(u

t+1
i )

Eq. (19)
= ∇Pi(u

t+1
i ) + λt

i + ρi(u
t+1
i − wt+1)

Eq. (20)
= ∇Pi(u

t+1
i ) + λt+1

i , ∀1 ≤ i ≤ n. (53)

Moreover, since w̃∗ and u∗ are the optimal solution of Eq. (24) with the associated Lagrangian multiplier

λ∗ ∈ Rm, we have by the optimality condition that there exists h∗ ∈ ∂h(w̃∗) such that

∇Pi(u
∗
i ) + λ∗

i = 0, ∇P0(w̃
∗) + h∗ −

n∑
i=1

λ∗
i = 0, u∗i = w̃∗, ∀1 ≤ i ≤ n. (54)

Recall that Pi, 0 ≤ i ≤ n, are strongly convex with the modulus σ > 0, we have

σ∥ut+1
i − w̃∗∥2 ≤ ⟨ut+1

i − w̃∗,∇Pi(u
t+1
i )−∇Pi(w̃

∗)⟩ (strong convexity of Pi)

= ⟨ut+1
i − w̃∗,−λt+1

i + λ∗
i + et+1

i ⟩ (w̃∗ = u∗i , ∇Pi(u
∗
i ) = λ∗

i , and Eq. (53))

≤ ⟨ut+1
i − w̃∗,−λt+1

i + λ∗
i ⟩+

σ

2
∥ut+1

i − w̃∗∥2 + 1

2σ
∥et+1

i ∥2,

(⟨a, b⟩ ≤ t/2∥a∥2 + 1/(2t)∥b∥2 for all a, b ∈ Rd and t > 0),

and

σ∥wt+1 − w̃∗∥2 ≤ ⟨wt+1 − w̃∗,∇P0(w
t+1) + ht+1 −∇P0(w̃

∗)− h∗⟩ (strong convexity of P0 + h)

= ⟨wt+1 − w̃∗,
n∑

i=1

[λt+1
i − λ∗

i − ρi(u
t+1
i − uti)] + et+1

0 ⟩, (Eq. (52) and Eq. (54))

≤ ⟨wt+1 − w̃∗,
n∑

i=1

[λt+1
i − λ∗

i − ρi(u
t+1
i − uti)]⟩+

σ

2
∥wt+1 − w̃∗∥2 + 1

2σ
∥et+1

0 ∥2,

(⟨a, b⟩ ≤ t/2∥a∥2 + 1/(2t)∥b∥2 for all a, b ∈ Rd and t > 0).

Summing up these inequalities and rearranging the terms, we obtain that

σ

2
(∥wt+1 − w̃∗∥2 +

n∑
i=1

∥ut+1
i − w̃∗∥2)

≤
n∑

i=1

⟨wt+1 − w̃∗, λt+1
i − λ∗

i − ρi(u
t+1
i − uti)⟩+

1

2σ
∥et+1

0 ∥2 +
n∑

i=1

(⟨ut+1
i − w̃∗,−λt+1

i + λ∗
i ⟩+

1

2σ
∥et+1

i ∥2)

≤
n∑

i=1

⟨wt+1 − ut+1
i , λt+1

i − λ∗
i ⟩+

n∑
i=1

ρi⟨wt+1 − w̃∗, uti − ut+1
i ⟩+ n+ 1

2σ
ε2t+1

(∥et+1
i ∥ ≤ εt+1 for all 0 ≤ i ≤ n and t ≥ 0)

Eq. (20)
=

n∑
i=1

1

ρi
⟨λt

i − λt+1
i , λt+1

i − λ∗
i ⟩+

n∑
i=1

ρi⟨wt+1 − w̃∗, uti − ut+1
i ⟩+ n+ 1

2σ
ε2t+1, (55)

Notice that the following well-known identities hold:

⟨wt+1 − w̃∗, uti − ut+1
i ⟩ = 1

2
(∥wt+1 − ut+1

i ∥2 − ∥wt+1 − uti∥2 + ∥w̃∗ − uti∥2 − ∥w̃∗ − ut+1
i ∥2), (56)

⟨λt
i − λt+1

i , λt+1
i − λ∗

i ⟩ =
1

2
(∥λ∗

i − λt
i∥2 − ∥λ∗

i − λt+1
i ∥2 − ∥λt

i − λt+1
i ∥2). (57)
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These along with Eqs. (20) and (55) imply that

σ

2
(∥wt+1 − w̃∗∥2 +

n∑
i=1

∥ut+1
i − w̃∗∥2) +

n∑
i=1

ρi
2
∥wt+1 − uti∥2 −

n+ 1

2σ
ε2t+1

Eq. (55))

≤
n∑

i=1

1

ρi
⟨λt

i − λt+1
i , λt+1

i − λ∗
i ⟩+

n∑
i=1

ρi⟨wt+1 − w̃∗, uti − ut+1
i ⟩+

n∑
i=1

ρi
2
∥wt+1 − uti∥2

Eq. (56)

≤
n∑

i=1

1

ρi
⟨λt

i − λt+1
i , λt+1

i − λ∗
i ⟩+

n∑
i=1

ρi
2
(∥w̃∗ − uti∥2 − ∥w̃∗ − ut+1

i ∥2 + ∥wt+1 − ut+1
i ∥2)

Eq. (20)
=

n∑
i=1

1

ρi
⟨λt

i − λt+1
i , λt+1

i − λ∗
i ⟩+

n∑
i=1

1

2ρi
∥λt+1

i − λt
i∥2 +

n∑
i=1

ρi
2
(∥w̃∗ − uti∥2 − ∥w̃∗ − ut+1

i ∥2)

Eq. (57)
=

n∑
i=1

1

2ρi
(∥λ∗

i − λt
i∥2 − ∥λ∗

i − λt+1
i ∥2) +

n∑
i=1

ρi
2
(∥w̃∗ − uti∥2 − ∥w̃∗ − ut+1

i ∥2)

=
n∑

i=1

[(
ρi
2
∥w̃∗ − uti∥2 +

1

2ρi
∥λ∗

i − λt
i∥2)− (

ρi
2
∥w̃∗ − ut+1

i ∥2 + 1

2ρi
∥λ∗

i − λt+1
i ∥2)]. (58)

Summing up this inequality over t = 0, . . . , T for any T ≥ 0, we obtain that

T∑
t=0

[
σ

2

(
∥wt+1 − w̃∗∥2 +

n∑
i=1

∥ut+1
i − w̃∗∥2

)
+

n∑
i=1

ρi
2
∥wt+1 − uti∥2 −

n+ 1

2σ
ε2t+1

]

≤
n∑

i=1

[(
ρi
2
∥w̃∗ − u0i ∥2 +

1

2ρi
∥λ∗

i − λ0
i ∥2
)
−
(
ρi
2
∥w̃∗ − uT+1

i ∥2 + 1

2ρi
∥λ∗

i − λT+1
i ∥2

)]
. (59)

Recall from Algorithm 2 that εt+1 = qt, u0i = w̃0, and λ0
i = −∇Pi(w̃

0). Notice from Eq. (54) that w̃∗ = u∗i
and λ∗

i = −∇Pi(u
∗
i ). By these and Eq. (59), one can deduce that

σ

2
(∥wt+1 − w̃∗∥2 +

n∑
i=1

∥ut+1
i − w̃∗∥2) ≤ n+ 1

2σ

∞∑
t=0

q2t +
n∑

i=1

(
ρi
2
∥w̃∗ − u0i ∥2 +

1

2ρi
∥λ∗

i − λ0
i ∥2
)

≤ n+ 1

2σ(1− q2)
+

n∑
i=1

(
ρi
2
∥w̃∗ − u0i ∥2 +

1

2ρi
∥λ∗

i − λ0
i ∥2
)

=
n+ 1

2σ(1− q2)
+

n∑
i=1

(
ρi
2
∥w̃∗ − w̃0∥2 + 1

2ρi
∥∇Pi(w̃

∗)−∇Pi(w̃
0)∥2

)
.

In view of this and the definition of Q in Eq. (29), we can observe that wt+1 ∈ Q and ut+1
i ∈ Q for all t ≥ 0

and 1 ≤ i ≤ n. Hence, the conclusion of this lemma holds as desired.

B.4 Proof of Theorem 12

We first prove an auxiliary recurrence result that will be used later.

Lemma 17. Assume that r, c > 0 and q ∈ (0, 1). Let {at}t≥0 be a sequence satisfying

(1 + r)at+1 ≤ at + cq2t, ∀t ≥ 0. (60)

Then we have

at+1 ≤ max

{
q,

1

1 + r

}t+1(
a0 +

c

1− q

)
, ∀t ≥ 0. (61)
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Proof. It follows Eq. (60) that

at+1 ≤
1

1 + r
at +

1

1 + r
cq2t ≤ 1

(1 + r)2
at−1 +

cq2(t−1)

(1 + r)2
+

cq2t

1 + r

≤ · · · ≤ 1

(1 + r)t+1
a0 +

t∑
i=0

cq2i

(1 + r)t+1−i
=

1

(1 + r)t+1
a0 + c

t∑
i=0

qi

(1 + r)t+1−i
qi

≤ 1

(1 + r)t+1
a0 + cmax

{
q,

1

1 + r

}t+1 t∑
i=0

qi

(qi ≤ max{q, 1/(1 + r)}i and 1/(1 + r)t+1−i ≤ max{q, 1/(1 + r)}t+1−i)

≤ 1

(1 + r)t+1
a0 +

c

1− q
max

{
q,

1

1 + r

}t+1

≤ max

{
q,

1

1 + r

}t+1(
a0 +

c

1− q

)
.

Hence, Eq. (61) holds as desired.

The following lemma proves the Lipschitz continuity of ∇Pi on Q.

Lemma 18. Let Q be defined in Eq. (29). Then there exists some L∇P > 0 such that

∥∇Pi(u)−∇Pi(v)∥ ≤ L∇P ∥u− v∥, ∀u, v ∈ Q, 0 ≤ i ≤ n. (62)

Proof. Notice from Eq. (29) that the set Q is convex and compact. By this and the local Lipschitz continuity

of ∇Pi on Rd, one can verify that there exists some constant L∇P > 0 such that Eq. (62) holds (see also

Lemma 1 in [39]).

We introduce a potential function St to measure the convergence of Algorithm 2:

St :=
n∑

i=1

(
ρi
2
∥w̃∗ − uti∥2 +

1

2ρi
∥λ∗

i − λt
i∥2
)
, ∀t ≥ 0. (63)

The following lemma gives a recursive result of St, which will play a key role on establishing the global

convergence rate for Algorithm 2 in Theorem 12.

Lemma 19. Suppose that Assumptions 0 to 2 hold. Let {wt+1}t≥0 and {ut+1
i }1≤i≤n,t≥0 be all the iterates

generated by Algorithm 2. Then we have

St ≤ qtr

[
S0 +

1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇P

)]
, ∀t ≥ 0, (64)

where σ and L∇P are given in Eq. (17) and Lemma 18, respectively, q and ρi, 1 ≤ i ≤ n, are inputs of

Algorithm 2, and

qr := max

{
q,

1

1 + r

}
, r := min

1≤i≤n

{
σρi

ρ2i + 2L2
∇P

}
. (65)

Proof. Recall from Eq. (58) that

St =

n∑
i=1

(
ρi
2
∥w̃∗ − uti∥2 +

1

2ρi
∥λ∗

i − λt
i∥2
)

≥
n∑

i=1

(
ρi + σ

2
∥w̃∗ − ut+1

i ∥2 + 1

2ρi
∥λ∗

i − λt+1
i ∥2 + ρi

2
∥wt+1 − uti∥2

)
+

σ

2
∥wt+1 − w̃∗∥2 − n+ 1

2σ
ε2t+1

≥
n∑

i=1

(
ρi + σ

2
∥w̃∗ − ut+1

i ∥2 + 1

2ρi
∥λ∗

i − λt+1
i ∥2

)
− n+ 1

2σ
ε2t+1. (66)

28



Also, notice from Eqs. (53), (54) and (62) that

∥λ∗
i − λt+1

i ∥2
Eqs. (53)and (54)

≤ (∥∇Pi(w̃
∗)−∇Pi(u

t+1
i )∥+ ∥et+1

i ∥)2
Eq. (62)

≤ 2L2
∇P ∥w̃∗ − ut+1

i ∥2 + 2ε2t+1,

which implies that

∥w̃∗ − ut+1
i ∥2 ≥ 2ρi

ρ2i + 2L2
∇P

(
ρi
2
∥w̃∗ − ut+1

i ∥2 + 1

2ρi
∥λ∗

i − λt+1
i ∥2

)
−

2ε2t+1

ρ2i + 2L2
∇P

. (67)

Plugging this into Eq. (66), we have

St

Eq. (67)

≥
n∑

i=1

(
1 +

σρi
ρ2i + 2L2

∇P

)(
ρi
2
∥w̃∗ − ut+1

i ∥2 + 1

2ρi
∥λ∗

i − λt+1
i ∥2

)
− n+ 1

2σ
q2t −

n∑
i=1

σ

ρ2i + 2L2
∇P

q2t

= (1 + r)St+1 −

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇P

)
q2t (r := min

1≤i≤n
σρi/(ρ

2
i + 2L2

∇P )).

When t = 0, Eq. (64) holds clearly. When t ≥ 1, by the above inequality, Eq. (65), and Lemma 17 with

(at, c) = (St,
n+1
2σ +

∑n
i=1

σ
ρ2i+2L2

∇P
), we obtain that

St ≤ max

{
q,

1

1 + r

}t
[
S0 +

1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇P

)]

= qtr

[
S0 +

1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇P

)]
.

Therefore, the conclusion of this lemma is true as desired.

Proof of Theorem 12. Notice that Algorithm 2 terminates when εt+1 +
∑n

i=1 ε̃i,t+1 is small. Next, we show

that this quantity is bounded by St defined in Eq. (63) plus other small quantities, and then use Lemma 19

to bound the maximum number of iterations of Algorithm 2.

By Eq. (22), and the fact that ∥∇φi,t(u
t+1
i )∥∞ ≤ εt+1 (see Algorithm 2), one can obtain that

εt+1 +

n∑
i=1

ε̃i,t+1
Eq. (22)

= εt+1 +

n∑
i=1

∥[∇φi,t(w
t+1)− ρi(w

t+1 − uti)]∥∞

≤ εt+1 +

n∑
i=1

∥∇φi,t(u
t+1
i )∥∞ +

n∑
i=1

∥∇φi,t(w
t+1)−∇φi,t(u

t+1
i )∥+

n∑
i=1

ρi∥wt+1 − uti∥

(∥u∥∞ ≤ ∥u∥ for all u ∈ Rd and the triangle inequality)

≤ (n+ 1)εt+1 +
n∑

i=1

(L∇P + ρi)∥wt+1 − ut+1
i ∥+

n∑
i=1

ρi∥wt+1 − uti∥, (68)

where the second inequality follows from

∥∇φi,t(w
t+1)−∇φi,t(u

t+1
i )∥

Eq. (19)

≤ ∥∇Pi(w
t+1)−∇Pi(u

t+1
i )∥+ ρi∥wt+1 − ut+1

i ∥
Eq. (62)

≤ (L∇P + ρi) ∥wt+1 − ut+1
i ∥, ∀1 ≤ i ≤ n.
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Next, we derive upper bounds for ∥wt+1 − ut+1
i ∥ and ρi∥wt+1 − uti∥, respectively. First, by Eqs. (58), (63)

and (64), we have

σ

4
∥wt+1 − ut+1

i ∥2 ≤ σ

2
∥wt+1 − w̃∗∥2 + σ

2
∥ut+1

i − w̃∗∥2

Eq. (58)

≤
n∑

i=1

(
ρi
2
∥w̃∗ − uti∥2 +

1

2ρi
∥λ∗

i − λt
i∥2) +

n+ 1

2σ
ε2t+1 (69)

= St +
n+ 1

2σ
q2t (the definition of St in Eq. (63) and εt+1 = qt for all t ≥ 0)

Eq. (64)

≤ qtr

[
S0 +

1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇P

)]
+

n+ 1

2σ
q2t

≤

qt/2r

[
S0 +

1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇P

)]1/2
+

√
n+ 1

2σ
qt


2

(a2 + b2 ≤ (a+ b)2 for all a, b ≥ 0). (70)

Using again Eqs. (58), (63) and (64), we obtain that

1

2
(

n∑
i=1

ρi∥wt+1 − uti∥)2 ≤ (

n∑
i=1

ρi)(

n∑
i=1

ρi
2
∥wt+1 − uti∥2) (Cauchy-Schwarz inequality)

Eq. (58)

≤ (

n∑
i=1

ρi)

n∑
i=1

(
ρi
2
∥w̃∗ − uti∥2 +

1

2ρi
∥λ∗

i − λt
i∥2) + (

n∑
i=1

ρi)
n+ 1

2σ
ε2t+1

= (

n∑
i=1

ρi)

(
St +

n+ 1

2σ
q2t
)

(the definition of St in Eq. (63) and εt+1 = qt for all t ≥ 0)

Eq. (64)

≤ (
n∑

i=1

ρi)

{[
S0 +

1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇P

)]
qtr +

n+ 1

2σ
q2t

}

≤ (
n∑

i=1

ρi)

qt/2r

[
S0 +

1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇P

)]1/2
+

√
n+ 1

2σ
qt


2

(a2 + b2 ≤ (a+ b)2 for all a, b ≥ 0). (71)

Combining Eqs. (68), (70) and (71), we obtain that

εt+1 +

n∑
i=1

ε̃i,t+1 ≤ (n+ 1)qt +

 2√
σ

n∑
i=1

(L∇P + ρi) +

√√√√2

n∑
i=1

ρi


·


[
S0 +

1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇P

)]1/2
qt/2r +

√
n+ 1

2σ
qt


≤ (n+ 1)qt/2r +

 2√
σ

n∑
i=1

(L∇P + ρi) +

√√√√2

n∑
i=1

ρi


·

{[
S0 +

1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇P

)]1/2
+

√
n+ 1

2σ

}
qt/2r

(q ≤ qr ≤ q1/2r < 1). (72)
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Recall from Algorithm 2 and Eq. (54) that (u0i , λ
0
i ) = (w̃0,−∇Pi(w̃

0)) and λ∗
i = −∇Pi(w̃

∗). By these and

Eq. (63), one has

S0 =

n∑
i=1

(
ρi
2
∥w̃∗ − w̃0∥2 + 1

2ρi
∥∇Pi(w̃

∗)−∇Pi(w̃
0)∥2

)
. (73)

For convenience, denote

b :=

 2√
σ

n∑
i=1

(L∇P + ρi) +

√√√√2

n∑
i=1

ρi


·

{[
n∑

i=1

(
ρi
2
∥w̃∗ − w̃0∥2 + 1

2ρi
∥∇Pi(w̃

∗)−∇Pi(w̃
0)∥2

)
+

1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇P

)]1/2

+

√
n+ 1

2σ

}
.

Using this, Eqs. (72) and (73), we obtain that

εt+1 +
n∑

i=1

ε̃i,t+1 ≤ (n+ 1 + b)qt/2r .

This along with the termination criterion in Eq. (23) implies that the number of iterations of Algorithm 2 is

bounded above by ⌈
2 log(τ/(n+ 1 + b))

log qr

⌉
+ 1 = O(| log τ |). (74)

Hence, the conclusion of this theorem holds as desired.

We observe from the proof of Theorem 12 that under Assumptions 0 to 2, the number of iterations of

Algorithm 2 is bounded by the quantity in Eq. (74).

C Proof of Theorem 5(b)

To establish the total inner-iteration complexity, we first show that all the inner iterates produced by

Algorithm 2 for solving all the subproblems of form Eq. (12) within Algorithm 1 are in a compact set (i.e.,

Q2 later), and then estimate the Lipschitz modulus of ∇Pi,k for all 0 ≤ i ≤ n and all k over Q2. Then we

can bound the inner-iteration complexity based on the size of Q2 and the Lipschitz modulus.

Boundedness of all inner iterates Recall from Eq. (15) that Q1 is a compact set. Let

U∇f := sup
w∈Q1

max
1≤i≤n

∥∇fi(w)∥, U∇c := sup
w∈Q1

max
0≤i≤n

∥∇ci(w)∥, Uc := sup
w∈Q1

max
0≤i≤n

∥ci(w)∥. (75)

Since ∇fi for all 1 ≤ i ≤ n are locally Lipschitz, they are Lipschitz on Q1 with some L∇f > 0. Similarly, ∇ci
for all 0 ≤ i ≤ n are Lispchitz on Q1 with some modulus L∇c > 0. Hence, ∇Pi,k for all 0 ≤ i ≤ n and all k
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are Lipschitz continuous on Q1:

∥∇Pi,k(u)−∇Pi,k(v)∥
Eq. (50)

≤ ∥∇fi(u)−∇fi(v)∥+ ∥[µk
i + βci(u)]+∥∥∇ci(u)−∇ci(v)∥

+ ∥[µk
i + βci(u)]+ − [µk

i + βci(v)]+∥∥∇ci(v)∥+
1

(n+ 1)β
∥u− v∥

Eq. (81)

≤ L∇f∥u− v∥+ (∥µ∗
i ∥+ ∥µk

i − µ∗
i ∥+ βUc)L∇c∥u− v∥

+ βU2
∇c∥u− v∥+ 1

(n+ 1)β
∥u− v∥

Eq. (47)

≤ L∇P,1∥u− v∥ (76)

where

L∇P,1 := L∇f + (∥µ∗∥+ r0 + 2
√
ns̄β + βUc)L∇c + βU2

∇c +
1

(n+ 1)β
. (77)

The next lemma says that all the inner iterates generated by Algorithm 2 stay in a compact set.

Lemma 20. Suppose that Assumptions 0 to 2 hold and let {wk,t+1}t≥0 and {uk,t+1
i }1≤i≤n,t≥0 be all the inner

iterates generated by Algorithm 2 for solving the subproblems of form Eq. (12) in Algorithm 1. Then it holds

that all these iterates stay in a compact set Q2, where

Q2 :=

{
v : ∥v − u∥2 ≤ (n+ 1)3β2

(1− q2)
+ (n+ 1)β

n∑
i=1

[(
ρi +

L2
∇P,1

ρi

)
(r0 + 2

√
ns̄β)2

]
, u ∈ Q1

}
, (78)

and L∇P,1 and Q1 are as defined in Eq. (77) and Eq. (15), respectively.

Proof. Recall that for any k ≥ 0, the subproblem in Eq. (12) has an optimal solution wk
∗ (see Eq. (40)), the

initial iterate of Algorithm 2 for solving Eq. (12) is wk, and Pi,k, 0 ≤ i ≤ n, are strongly convex with modulus

1/[(n+1)β]. By Lemma 11 with (Pi, w̃
∗, w̃0, σ) = (Pi,k, w

k
∗ , w

k, 1/[(n+1)β]), we obtain that {wk,t+1}t≥0 and

{uk,t+1
i }t≥0,1≤i≤n stay in a set Q̃ defined as

Q̃ :=

{
v : ∥v − wk

∗∥2 ≤
(n+ 1)3β2

(1− q2)
+ (n+ 1)β

n∑
i=1

(
ρi∥wk

∗ − wk∥2 + 1

ρi
∥∇Pi,k(w

k
∗)−∇Pi,k(w

k)∥2
)}

.

Thus, to show the boundedness of all the inner iterates, it suffices to derive upper bounds for ∥wk
∗ −wk∥ and

∥∇Pi,k(w
k
∗)−∇Pi,k(w

k)∥ that are independent of k. Since wk, wk
∗ ∈ Q1, we have

∥∇Pi,k(w
k
∗)−∇Pi,k(w

k)∥ ≤ L∇P,1∥wk
∗ − wk∥ (79)

due to Eq. (76), where we note that L∇P,1 is independent of k. Moreover, ∥wk
∗ − wk∥ ≤ r0 + 2

√
ns̄β from

Eq. (47) provides a k-independent upper bound for ∥wk
∗ − wk∥. Thus, we have

n∑
i=1

(
ρi∥wk

∗ − wk∥2 + 1

ρi
∥∇Pi,k(w

k
∗)−∇Pi,k(w

k)∥2
)

≤
n∑

i=1

[(
ρi +

L2
∇P,1

ρi

)
(r0 + 2

√
ns̄β)2

]
. (80)

Finally, combining the above results and noting that wk
∗ ∈ Q1 completes the proof.

Lipschitz modulus of ∇Pi,k for all 0 ≤ i ≤ n and all k over Q2 Let L∇f,2 be the Lipschitz constant of

∇fi, 1 ≤ i ≤ n, on Q2, and L∇c,2 be the Lipschitz constant of ∇ci, 0 ≤ i ≤ n, on Q2. Also, define

U∇c,2 := sup
w∈Q2

max
0≤i≤n

∥∇ci(w)∥, Uc,2 := sup
w∈Q2

max
0≤i≤n

∥ci(w)∥. (81)

Using similar arguments as for deriving L∇P,1 in Eq. (77), we can see that ∇Pi,k, 0 ≤ i ≤ n, are Lipschitz

continuous on Q2 with modulus L∇P,2 defined as

L∇P,2 := L∇f,2 + (∥µ∗∥+ r0 + 2
√
ns̄β + βUc,2)L∇c,2 + βU2

∇c,2 +
1

(n+ 1)β
. (82)
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Proof of Theorem 5(b) Recall that Theorem 12 has established the number of iterations of Algorithm 2

for solving each subproblem of Algorithm 1. In the rest of this proof, we derive an upper bound for the total

number of inner iterations for solving all subproblems of Algorithm 1.

We see from Lemma 20 that all iterates generated by Algorithm 2 for solving Eq. (12) lie in Q2. Also, ∇Pi,k,

1 ≤ i ≤ n, are L∇P,2-Lipschitz continuous on Q2. Therefore, by Theorem 12 with (τ, Pi, σ, L∇P , w̃
∗, w̃0) =

(τk, Pi,k, 1/[(n+ 1)β], L∇P,2, w
k
∗ , w

k) and the discussion at the end of Appendix B.4, one has that the number

of iterations of Algorithm 2 for solving Eq. (12) during the k-th outer loop is no more than

Tk :=

⌈
2 log(τk/(n+ 1 + bk))

log q̃r

⌉
+ 1 (83)

where

q̃r := max

{
q,

1

1 + r̃

}
, r̃ := min

1≤i≤n

{
ρi

(n+ 1)β(ρ2i + 2L2
∇P,2)

}
,

bk :=

2
√
(n+ 1)β

n∑
i=1

(L∇P,2 + ρi) +

√√√√2(
n∑

i=1

ρi)


·

{[
n∑

i=1

(
ρi
2
∥wk

∗ − wk∥2 + 1

2ρi
∥∇Pi,k(w

k
∗)−∇Pi,k(w

k)∥2
)

+
1

1− q

(
(n+ 1)2β

2
+

1

(n+ 1)β

n∑
i=1

1

ρ2i + 2L2
∇P,2

)]1/2
+ (n+ 1)

√
β

2

}
.

Plugging Eq. (80) into b̄, we have that bk ≤ b̄, where

b̄ :=

2
√

(n+ 1)β
n∑

i=1

(L∇P,2 + ρi) +

√√√√2(
n∑

i=1

ρi)


·


[

n∑
i=1

ρ2i + L2
∇P,1

2ρi
(r0 + 2

√
ns̄β)2 +

1

1− q

(
(n+ 1)2β

2
+

1

(n+ 1)β

n∑
i=1

1

ρ2i + 2L2
∇P,2

)]1/2
+ (n+ 1)

√
β

2

 ,

which is independent of k. By bk ≤ b̄, τk = s̄/(k + 1)2, k ≤ Kϵ1,ϵ2 where Kϵ1,ϵ2 is the upper bound for the

number of outer iterations as defined in Appendix A.3, and Eq. (83), one has that

Tk ≤
⌈
2 log((n+ 1 + b̄)(Kϵ1,ϵ2 + 1)2/s̄)

log(q̃−1
r )

⌉
+ 1.

Therefore, by Kϵ1,ϵ2 = O(max{ϵ−2
1 , ϵ−2

2 }), one can see that the total number of inner iterations of Algorithm 1

is at most

Kϵ1,ϵ2∑
k=0

Tk ≤ (Kϵ1,ϵ2 + 1)

(⌈
2 log((n+ 1 + b̄)(Kϵ1,ϵ2 + 1)2/s̄)

log(q̃−1
r )

⌉
+ 1

)
= Õ(max{ϵ−2

1 , ϵ−2
2 }). (84)

Hence, Theorem 5(b) holds as desired.

D A centralized proximal AL method

In this part, we present a centralized proximal AL method (adapted from Algorithm 2 of [40]) for solving the

convex constrained optimization problem:

min
w

f(w) + h(w) s.t. c(w) ≤ 0, (85)
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Algorithm 3 A centralized proximal AL method for solving Eq. (85)

Input: tolerances ϵ1, ϵ2 ∈ (0, 1), w0 ∈ dom(h), µ0 ≥ 0, nondecreasing positive {τk}k≥0, and β > 0.

for k = 0, 1, 2, . . . do

Apply a centralized solver to find an approximate solution wk+1 to:

min
w

{
ℓk(w) = f(w) + h(w) +

1

2β

(
∥[µk + βc(w)]+∥2 − ∥µk∥2

)
+

1

2β
∥w − wk∥2

}
such that

dist∞(0, ∂ℓk(w
k+1)) ≤ τk.

Update the Lagrangian multiplier:

µk+1 = [µk + βc(wk+1)]+.

Output (wk+1, µk+1) and terminate the algorithm if

∥wk+1 − wk∥∞ + βτk ≤ βϵ1, ∥µk+1 − µk∥∞ ≤ βϵ2.

end for

where the function f : Rd → R and the mapping c : Rd → Rm are continuous differentiable and convex, and

h is closed convex.

E Extra Numerical Results

E.1 Dataset description for Neyman-Pearson classification

In this part, we describe the datasets for Neyman-Pearson classification in Section 5.1. ‘breast-cancer-wisc’,

‘adult-a’, and ‘monks-1’ are three binary classification datasets. We present the total number of samples for

class 0 and class 1 and the number of features.

Table 3: Datasets for Neyman-Pearson classification

dataset class 0/class 1 feature dimension

breast-cancer-wisc 455/240 20

adult-a 24715/7840 21

monks-1 275/275 21

E.2 Linear equality constrained quadratic programming

In this subsection, we consider the linear equality constrained quadratic programming:

min
w

n∑
i=1

(
1

2
wTAiw + bTi w

)
s.t. Ciw + di = 0, 0 ≤ i ≤ n, (86)

where Ai ∈ Rd×d, 1 ≤ i ≤ n, are positive semidefinite, bi ∈ Rd, 1 ≤ i ≤ n, Ci ∈ Rm̃×d, 0 ≤ i ≤ n, and

di ∈ Rm̃, 0 ≤ i ≤ n.

For each (d, n, m̃), we randomly generate an instance of Eq. (86). In particular, for each 1 ≤ i ≤ n, we first

generate a random matrix Ai by letting Ai = UiDiU
T
i , where Di ∈ Rd×d is a diagonal matrix. The diagonal
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Table 4: Numerical results for Eq. (86) using our algorithm vs. using cProx-AL. Inside the parentheses are

the respective standard deviations over 10 random trials.

objective value feasibility violation

n d m̃ Algorithm 1 cProx-AL relative difference Algorithm 1 cProx-AL

1

100 1 -0.23 (4.65e-6) -0.23 (2.38e-5) 1.63e-3 (1.01e-4) 3.33e-4 (1.14e-5) 5.68e-4 (2.82e-5)

300 3 -0.37 (2.74e-6) -0.37 (1.32e-6) 1.01e-3 (3.51e-5) 3.52e-4 (1.44e-5) 4.45e-4 (1.70e-5)

500 5 -0.30 (1.36e-5) -0.30 (7.54e-6) 1.34e-3 (4.62e-5) 4.38e-4 (5.36e-5) 3.85e-4 (1.05e-5)

5

100 1 9.81 (7.18e-5) 9.80 (1.46e-5) 1.09e-3 (7.96e-6) 1.34e-4 (9.02e-6) 8.03e-4 (1.57e-6)

300 3 8.47 (8.12e-5) 8.45 (1.30e-5) 1.36e-3 (9.62e-6) 1.09e-4 (1.31e-5) 8.28e-4 (1.98e-6)

500 5 9.92 (4.43e-5) 9.91 (4.87e-6) 8.26e-4 (4.27e-6) 1.33e-4 (9.68e-6) 3.73e-4 (2.43e-7)

10

100 1 49.40 (9.02e-5) 49.37 (5.82e-6) 5.59e-4 (1.67e-5) 7.31e-5 (7.54e-6) 5.88e-4 (1.34e-7)

300 3 41.49 (7.04e-5) 41.44 (5.48e-6) 1.14e-3 (1.77e-6) 8.56e-5 (2.27e-7) 8.73e-4 (7.26e-6)

500 5 41.45 (2.25e-5) 41.41 (5.30e-6) 9.39e-4 (4.94e-7) 9.29e-4 (2.55e-6) 7.66e-4 (1.37e-7)

entries of Di are generated randomly from a uniform distribution over [0.5, 1], and Ui ∈ Rd×d is a randomly

generated orthogonal matrix. We then randomly generate Ci, 0 ≤ i ≤ n, with all entries drawn from a

normal distribution with mean zero and a standard deviation of 1/
√
d. Finally, we generate bi, 1 ≤ i ≤ n

and di, 0 ≤ i ≤ n as random vectors uniformly selected from the unit Euclidean sphere.

We apply Algorithm 1 and cProx-AL (Algorithm 3) to find a (10−3, 10−3)-optimal solution of Eq. (86),

and compare their solution quality. In particular, when implementing Algorithm 1, we exactly solve the

quadratic subproblems in Eqs. (18) and (19). We run 10 trials of Algorithm 1 and cProx-AL, where for each

run, both algorithms share the same initial point w0, randomly chosen from the unit Euclidean sphere. We

set the other parameters for Algorithm 1 and cProx-AL as µ0
i = (0, . . . , 0)T ∀0 ≤ i ≤ n, s̄ = 0.1 and β = 10.

We also set ρi = 1 for each 1 ≤ i ≤ n for Algorithm 2.

We observe that Algorithm 1 and cProx-AL are capable of finding nearly feasible solutions, and achieve

similar objective value. In view of the small standard deviations, we observe that the convergence behavior

of Algorithm 1 remains stable across 10 trial runs.
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