
ar
X

iv
:2

31
1.

13
09

4v
1

 [
m

at
h.

O
C

]
 2

2
N

ov
 2

02
3

Newton-CG methods for nonconvex unconstrained optimization with

Hölder continuous Hessian

Chuan He∗ Zhaosong Lu†

November 13, 2023

Abstract

In this paper we consider a nonconvex unconstrained optimization problem minimizing a twice differen-

tiable objective function with Hölder continuous Hessian. Specifically, we first propose a Newton-conjugate

gradient (Newton-CG) method for finding an approximate first-order stationary point (FOSP) of this prob-

lem, assuming the associated the Hölder parameters are explicitly known. Then we develop a parameter-free

Newton-CG method without requiring any prior knowledge of these parameters. To the best of our knowl-

edge, this method is the first parameter-free second-order method achieving the best-known iteration and

operation complexity for finding an approximate FOSP of this problem. Furthermore, we propose a Newton-

CG method for finding an approximate second-order stationary point (SOSP) of the considered problem with

high probability and establish its iteration and operation complexity. Finally, we present preliminary nu-

merical results to demonstrate the superior practical performance of our parameter-free Newton-CG method

over a well-known regularized Newton method.

Keywords Nonconvex unconstrained optimization, Newton-conjugate gradient method, Hölder continuity, iteration

complexity, operation complexity

Mathematics Subject Classification 49M15, 49M37, 58C15, 90C25, 90C30

1 Introduction

In this paper we consider the nonconvex unconstrained optimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is twice continuously differentiable and ∇2f is Hölder continuous in an open neighborhood

of a level set of f (see Assumption 1 for details). Our goal is to propose easily implementable second-order

methods with complexity guarantees, particularly, Newton-conjugate gradient (Newton-CG) methods for finding

approximate first- and second-order stationary points of problem (1).

In recent years, there have been significant advancements in second-order methods with complexity guaran-

tees for problem (1) when ∇2f is Lipschitz continuous. Notably, cubic regularized Newton methods [1, 6, 10, 26],

trust-region methods [12, 13, 23], second-order line-search method [29], inexact regularized Newton method [14],

quadratic regularization method [4], and Newton-CG method [28] were developed for finding an (ǫ,
√
ǫ)-second-

order stationary point (SOSP) x of problem (1) satisfying

‖∇f(x)‖ ≤ ǫ, λmin(∇2f(x)) ≥ −
√
ǫ,

where ǫ ∈ (0, 1) is a tolerance parameter and λmin(·) denotes the minimum eigenvalue of the associated matrix.

Under suitable assumptions, it was shown that these second-order methods achieve an iteration complexity of

∗Department of Computer Science and Engineering, University of Minnesota, USA (email: he000233@umn.edu).
†Department of Industrial and Systems Engineering, University of Minnesota, USA (email: zhaosong@umn.edu).

1

http://arxiv.org/abs/2311.13094v1

O(ǫ−3/2) for finding an (ǫ,
√
ǫ)-SOSP, which has been proved to be optimal in [9, 11]. In addition to iteration

complexity, operation complexity of the methods in [1, 6, 12, 28, 29], measured by the number of their funda-

mental operations, was also studied. Under suitable assumptions, it was shown that these methods achieve an

operation complexity of Õ(ǫ−7/4) for finding an (ǫ,
√
ǫ)-SOSP of problem (1) with high probability.1 Similar op-

eration complexity bounds have also been achieved by gradient-based methods (e.g., see [2, 7, 8, 19, 22, 24, 30]).

Nonetheless, there has been very little study on second-order methods for problem (1) – a nonconvex uncon-

strained optimization problem with Hölder continuous Hessian. To the best of our knowledge, the regularized

Newton methods proposed in [16, 31] are the only existing second-order methods for problem (1). Specifically,

the cubic regularized Newton method in [16] tackles problem (1) by solving a sequence of cubic regularized

Newton subproblems. It is a parameter-free second-order method and does not require any prior information

on the modulus Hν and exponent ν associated with the Hölder continuity (see Assumption 1). Under mild

assumptions, it was shown in [16] that this method enjoys an iteration complexity of

O
(
H

1
1+ν

ν ǫ−
2+ν

1+ν

)
(2)

for finding an approximate first-order stationary point (FOSP) x of problem (1) satisfying ‖∇f(x)‖ ≤ ǫ. This

iteration complexity matches the lower iteration complexity bound established in [11]. Yet, its operation com-

plexity remains unknown. Moreover, this method requires solving many cubic regularized Newton subproblems

exactly per iteration, which is highly expensive to implement in general. In [31], two nice adaptive regularized

Newton methods were proposed for finding an approximate SOSP of the problem minimizing a nonconvex func-

tion with Hölder continuous Hessian on a Riemannian manifold, which includes problem (1) as a special case.

More specifically, when applied to problem (1), one method in [31] solves a sequence of (2 + ν)th-order regular-

ized Newton subproblems, while another method in [31] solves a sequence of standard trust-region subproblems.

Iteration and operation complexity results of these methods were established in [31]. However, these methods

are not fully parameter-free since prior knowledge of the Hölder exponent is required in order to achieve the

best-known complexity.

As discussed above, the existing second-order methods [16, 31] for problem (1) require solving a sequence of

sophisticated trust-region or regularized Newton subproblems. In this paper, we propose easily implementable

second-order methods, particularly Newton-CG methods for (1), by applying the capped CG method [28, Al-

gorithm 1] to solve a sequence of systems of linear equations with coefficient matrix resulting from a proper

perturbation on the Hessian of f . Specifically, we first propose a Newton-CG method (Algorithm 1) to find an

approximate FOSP of (1), assuming the parameters associated with the Hölder continuity of ∇2f are explicitly

known. Then we develop a parameter-free Newton-CG method (Algorithm 2) for finding an approximate FOSP

of (1) without requiring any prior knowledge of these parameters. Finally, we propose a Newton-CG method

(Algorithm 3) to find an approximate SOSP of (1). By leveraging a novel inexact oracle (see Lemma 1), we

show that these methods achieve the best-known iteration and operation complexity for finding an approximate

FOSP or SOSP of (1). In addition, preliminary numerical results are presented, demonstrating the practical

advantages of our parameter-free Newton-CG method over the cubic regularized Newton method [16].

The main contributions of this paper are as follows.

• We propose Newton-CG methods (Algorithms 1 and 3) to find an approximate FOSP and SOSP of (1),

respectively, assuming that the parameters associated with the Hölder continuity of ∇2f are explicitly

known. In contrast with the regularized Newton methods [16, 31], our methods solve much simpler

subproblems, while achieving the best-known iteration and operation complexity.

• We propose a parameter-free Newton-CG method (Algorithm 2) for finding an approximate FOSP of

(1) without requiring prior knowledge of these parameters. To the best of our knowledge, this is the

first parameter-free second-order method for finding an approximate FOSP of (1), while achieving the

best-known iteration and operation complexity.

1Õ(·) represents O(·) with logarithmic terms omitted.

2

• We introduce a novel inexact oracle (see Lemma 1) as the framework for the design and analysis of our

Newton-CG methods. It substantially facilitates our development and analysis and shall be a useful tool

for further algorithmic development for problem (1).

The remainder of this paper is organized as follows. In Section 2, we introduce some notation and make

some assumptions on the problem studied in this paper. In Section 3, we propose a Newton-CG method for

finding an approximate FOSP of (1) and study its complexity. In Section 4, we propose a parameter-free

Newton-CG method for finding an approximate FOSP of (1) and study its complexity. In Section 5, we propose

a Newton-CG method for finding an approximate SOSP of (1) and study its complexity. Section 6 presents

preliminary numerical results. In Section 7, we present the proofs of the main results. Finally, we discuss some

future research directions in Section 8.

2 Notation and assumptions

Throughout this paper, we let Rn denote the n-dimensional Euclidean space. We use ‖·‖ to denote the Euclidean
norm of a vector or the spectral norm of a matrix. For any s ∈ R, we let s+ and ⌈s⌉ denote the nonnegative part
of s and the least integer no less than s, respectively, and we let sgn(s) be 1 if s ≥ 0 and let it be −1 otherwise.

For a real symmetric matrix H , we use λmin(H) to denote its minimum eigenvalue. For any bounded set S, we
let DS be the diameter of S, that is, DS = supx,y∈S ‖x− y‖. In addition, Õ(·) represents O(·) with logarithmic

terms omitted.

We make the following assumptions on problem (1) throughout this paper.

Assumption 1. (a) The level set Lf(x
0) := {x : f(x) ≤ f(x0)} is compact for some x0 ∈ R

n.

(b) The function f : Rn → R is twice continuously differentiable, and ∇2f is Hölder continuous in a bounded

convex open neighborhood, denoted by Ω, of Lf(x
0), i.e., there exist ν ∈ [0, 1] and a finite Hν > 0 such that

‖∇2f(x)−∇2f(y)‖ ≤ Hν‖x− y‖ν , ∀x, y ∈ Ω. (3)

It follows from Assumption 1(a) that there exist flow ∈ R, Ug > 0 and UH > 0 such that

f(x) ≥ flow, ‖∇f(x)‖ ≤ Ug, ‖∇2f(x)‖ ≤ UH , ∀x ∈ Lf(x
0). (4)

We now make some remarks about Assumption 1(b).

Remark 1. (i) Assumption 1(b) includes a large class of smoothness conditions of ∇2f . Indeed, when ν = 1,

the condition (3) recovers the standard Lipschitz continuity of ∇2f . When ν = 0, the condition (3) means

that variations of ∇2f on Ω are bounded, which is equivalent to the boundedness of ∇2f on Ω due to the

boundedness of Ω imposed in Assumption 1(b). Moreover, when ν ∈ (0, 1], the condition (3) implies that

∇2f is uniformly continuous on Ω.

(ii) When the value of ν in Assumption 1(b) is larger, the smoothness of the Hessian of f is stronger. Indeed,

we let 0 ≤ ν1 < ν2 ≤ 1 and suppose that ∇2f is Hölder continuous with ν2 ∈ [0, 1] and a finite Hν2 > 0.

Since Ω is bounded, it follows that

‖∇2f(x)−∇2f(y)‖ ≤ Hν2‖x− y‖ν2 ≤ Hν2D
ν2−ν1
Ω ‖x− y‖ν1 .

Hence, ∇2f is Hölder continuous with ν1 ∈ [0, 1] and Hν1 = Hν2D
ν2−ν1
Ω > 0.

(iii) As a direct consequence of Assumption 1(b), one can verify that the two descent inequalities below hold for

all x, y ∈ Ω (e.g., see equations (2.7) and (2.8) in [16]):

‖∇f(y)−∇f(x) −∇2f(x)(y − x)‖ ≤ Hν‖y − x‖1+ν

1 + ν
, (5)

f(y) ≤ f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x) +

Hν‖y − x‖2+ν

(1 + ν)(2 + ν)
. (6)

3

Let us introduce a class of functions that satisfy Assumption 1(b) with ν ∈ (0, 1].

Example 1. Consider a function f(x) = φ(x)2+ν
+ , where φ : Rn → R is twice Lipschitz continuously differen-

tiable in a compact convex set S, that is, there exists Lφ
H > 0 such that

‖∇2φ(x) −∇2φ(y)‖ ≤ Lφ
H‖x− y‖, ∀x, y ∈ S .

By the definition of f , one can verify that

∇2f(x) = (2 + ν)φ(x)1+ν
+ ∇2φ(x) + (1 + ν)(2 + ν)φ(x)ν+∇φ(x)∇φ(x)T .

Here, observe that φ(x)1+ν
+ is Lipschitz continuous in S. Also, recall that for all a, b ∈ R, we have aν+ − bν+ ≤

|a − b|ν , which implies that φ(·)ν+ is Hölder continuous in S with ν ∈ (0, 1]. In view of these and the fact that

∇2φ is Lipschitz continuous in S, we conclude that ∇2f is Hölder continuous in S with ν ∈ (0, 1].

3 A Newton-CG method for seeking an FOSP

In this section, we propose a Newton-CG method in Algorithm 1 for seeking an ǫ-FOSP of problem (1) that

satisfies ‖∇f(x)‖ ≤ ǫ, and then analyze its complexity results.

We first review a modified CG method, referred to as capped CG method, that will be used in Algorithm 1.

The capped CG method was proposed in [28, Algorithm 1] for solving a possibly indefinite linear system

(H + 2εI)d = −g, (7)

where 0 6= g ∈ R
n, ε > 0, and H ∈ R

n×n is a symmetric matrix. The capped CG method terminates within a

finite number of iterations and returns either an approximate solution d to (7) satisfying ‖(H+2εI)d+g‖ ≤ ζ̂‖g‖
and dTHd ≥ −ε‖d‖2 for some ζ̂ ∈ (0, 1) or a sufficiently negative curvature direction d of H with dTHd <

−ε‖d‖2. For ease of reference, we present the capped CG method in Algorithm 4 in Appendix A.

We now introduce our Newton-CG method (Algorithm 1) for solving problem (1). At each iteration k, if

the current iterate xk does not satisfy ‖∇f(xk)‖ ≤ ǫ, the capped CG method (Algorithm 4) is invoked to find

either an inexact Newton direction or a negative curvature direction by solving a damped Newton system of

the form:

(∇2f(xk) + 2
√
γν(ǫ)ǫI)d = −∇f(xk), (8)

where γν(·) is the inexact Lipschitz continuity modulus 2 defined as

γν(ǫ) := 4H
2

1+ν

ν ǫ−
1−ν

1+ν . (9)

The search direction dk and step length αk are then produced, depending on the type of dk, and the next iterate

xk+1 is generated based on dk and αk. Details of this Newton-CG method are presented in Algorithm 1.

Before analyzing Algorithm 1, we make some remarks about the damped Newton system (8). Notice that

directly applying a conjugate gradient (CG) method to an indefinite Newton system, associated with problem (1),

may not produce a sufficiently descent direction for the objective f . To overcome this issue, the authors of [28]

proposed to solve a slightly damped Newton system:

(
∇2f(xk) + 2

√
ǫI
)
d = −∇f(xk), 3 (10)

where
√
ǫ is the damping parameter. Leveraging this idea, they developed a Newton-CG method that achieves an

iteration complexity of O(L3
Hǫ

−3/2) for finding an ǫ-FOSP of nonconvex unconstrained optimization problems,

where LH is the Lipschitz continuity modulus. However, the dependence on LH in this complexity result can

be improved. It can be verified that by using the line search techniques developed in [17, Algorithm 1] and

2The inexact Lipschitz continuity modulus has been widely used to study first-order methods with Hölder continuous gradient

(e.g., see [15, 18, 25]).
3The damping parameter is set as ǫH in [28], where ǫH is the tolerance for the second-order optimality condition. It was also

mentioned in [28, Section 4.2] that to achieve the iteration complexity of O(ǫ−3/2) for finding an ǫ-FOSP, one should choose ǫ2H = ǫ.

4

replacing the damping parameter
√
ǫ in (10) with

√
LHǫ, the resulting iteration complexity can be improved

to O(L
1/2
H ǫ−3/2), matching the best-known result stated in (2) with ν = 1. Based on this observation, for the

Hölder continuous case, we propose to set the damping parameter as
√
γν(ǫ)ǫ with γν(ǫ) being the inexact

Lipschitz continuity modulus. We next show in Theorem 2 and Remark 2 that with this choice of damping

parameter, our proposed Newton-CG method achieves the optimal iteration complexity of second-order methods

for finding an ǫ-FOSP of problem (1) under Assumption 1.

Algorithm 1 A Newton-CG method for finding an ǫ-FOSP of (1)

input: tolerance ǫ ∈ (0, 1), starting point x0, CG-accuracy parameter ζ ∈ (0, 1), γν(ǫ) given in (9);

Set k ← 0;

while ‖∇f(xk)‖ > ǫ do

Call Algorithm 4 (Appendix A) with H = ∇2f(xk), ε =
√

γν(ǫ)ǫ, g = ∇f(xk), accuracy parameter ζ and U = 0 to

obtain outputs d, d type;

if d type=NC then

Set

dk = − sgn(dT∇f(xk))
|dT∇2f(xk)d|

‖d‖3
d and αk = 1/γν(ǫ); (11)

else {d type=SOL}

Set

dk = d and αk = min

{

1,
[ǫ/γν(ǫ)]

1/4

2‖d‖1/2

}

; (12)

end if

Set xk+1 = xk + αkd
k and k ← k + 1;

end while

The following theorem shows that f is nonincreasing along the iterates generated by Algorithm 1. Its proof

is deferred to Section 7.1.

Theorem 1 (monotonicity of Algorithm 1). Suppose that Assumption 1 holds. Let {xk}k∈K1 be all the

iterates generated by Algorithm 1, where K1 is a subset of consecutive nonnegative integers starting from 0.

Then {f(xk)}k∈K1 is nonincreasing.

The following theorem states the iteration and operation complexity of Algorithm 1, whose proof is relegated

to Section 7.1.

Theorem 2 (iteration and operation complexity of Algorithm 1). Suppose that Assumption 1 holds.

Let

K1 =
⌈
144(f(x0)− flow)γν(ǫ)

1/2ǫ−3/2
⌉
+ 1, (13)

where flow and γν(ǫ) are given in (4) and (9), respectively. Then the following statements hold.

(i) Algorithm 1 terminates in at most K1 iterations.

(ii) The total main operations of Algorithm 1 consist of

Õ
(
K1 min

{
n, [γν(ǫ)ǫ]

−1/4
})

gradient evaluations and Hessian-vector products of f .

Remark 2. From Theorem 2, we observe that Algorithm 1 achieves an iteration and operation complexity of

O
(
H

1
1+ν

ν ǫ−
2+ν

1+ν

)
and Õ

(
H

1
1+ν

ν ǫ−
2+ν

1+ν min
{
n, (Hνǫ

ν)−
1

2(1+ν)

})
(14)

for finding an ǫ-FOSP of problem (1), respectively. In particular, the iteration complexity in (14) has been shown

to be optimal in [11], and has also been achieved by the cubic regularized Newton method in [16]. When ν = 1, the

complexity results in (14) recover the iteration and operation complexity of O(ǫ−3/2) and Õ(ǫ−3/2 min{n, ǫ−1/4}),
respectively, established for the Newton-CG method in [28] for finding an ǫ-FOSP, which are the best-known

results for second-order methods.

5

4 A parameter-free Newton-CG method for seeking an FOSP

After the previous discussions, we can observe that Algorithm 1 achieves the best-known iteration complexity

for finding an ǫ-FOSP, and its fundamental operations rely only on gradient evaluations and Hessian-vector

products of f . Nonetheless, computing the parameter γν(ǫ) given in (9) still requires knowing the problem

parameters ν and Hν associated with the Hölder continuity of ∇2f . These parameters may not be available for

a sophisticated function f . Even if known, these parameters are not unique. The tighter value of them typically

leads to a faster convergent algorithm. Yet, it may be challenging to find the tightest possible value for them.

In light of these challenges, we next propose a parameter-free Newton-CG method in Algorithm 2, equipped

with an innovative backtracking scheme for estimating the inexact Lipschitz continuity modulus γν(ǫ). This

method enjoys the same order of iteration and operation complexity guarantees as Algorithm 1 for finding an

ǫ-FOSP of (1) without prior knowledge of ν and Hν .

Algorithm 2 A parameter-free Newton-CG method for finding an ǫ-FOSP of (1)

input: tolerance ǫ ∈ (0, 1), starting point x0, CG-accuracy parameter ζ ∈ (0, 1), trial parameter γ−1 > 0, backtracking ratio

θ > 1;

Set k ← 0;

while ‖∇f(xk)‖ > ǫ do

Set x̃ = xk and γ̃ = max{γ−1, γk−1/θ};
for t = 0, 1, 2, . . . do

Set γ̃t = θtγ̃;

Call Algorithm 4 (Appendix A) with H = ∇2f(x̃), ε =
√
γ̃tǫ, g = ∇f(x̃), accuracy parameter ζ, and U = 0 to obtain

outputs d, d type;

if d type=NC then

Set

d̃t = − sgn(dT∇f(x̃)) |d
T∇2f(x̃)d|
‖d‖3

d and α̃t = 1/γ̃t; (15)

Break the inner loop if α̃t and d̃t satisfy

f(x̃+ α̃td̃
t) ≤ f(x̃)− α̃2

t ‖d̃t‖3/6. (16)

else {d type=SOL}
Set

d̃t = d and α̃t = min

{
1,

(ǫ/γ̃t)1/4

2‖d‖1/2

}
; (17)

Break the inner loop if α̃t and d̃t satisfy

‖∇f(x̃+ α̃td̃
t)‖ ≤ ǫ, f(x̃ + α̃td̃

t) ≤ f(x̃). (18)

if α̃t < 1 then

Break the inner loop if α̃t and d̃t satisfy

f(x̃+ α̃td̃
t) ≤ f(x̃)−

√
γ̃tǫα̃

2
t ‖d̃t‖2/2. (19)

else {α̃t = 1}
Break the inner loop if (19) holds and d̃t satisfies

‖∇f(x̃+ d̃t)−∇f(x̃)−∇2f(x̃)d̃t‖ ≤ 2γ̃t‖d̃t‖2 + ǫ/2. (20)

end if

end if

end for

Set dk = d̃t, αk = α̃t, and γk = γ̃t;

Set xk+1 = xk + αkd
k and k ← k + 1;

end while

We now describe the parameter-free Newton-CG method (Algorithm 2) for solving (1). At each iteration

k, the capped CG method (Algorithm 4) is invoked to solve a damped Newton system (8) with the parameter

γν(ǫ) replaced by a trial value γ̃t. This gives a trial search direction d̃t and a trial step length α̃t. Next, this

method checks whether an ǫ-FOSP of (1) is found (see (18)), or whether (γ̃t, α̃t, d̃
t) satisfies certain condition

that ensure sufficient reduction for f (see (16), (19), and (20)). If not, this method increases the trial value γ̃t
by a ratio θ > 1, and repeats the above process. Otherwise, this method breaks the inner loop and updates the

6

next iterate as xk+1 = xk + αkd
k with dk = d̃t and αk = α̃t. The detailed description of this parameter-free

Newton-CG method is presented in Algorithm 2.

The following theorem shows that the number of calls of Algorithm 4 at each iteration of Algorithm 2 is

finite, and therefore, Algorithm 2 is well-defined. Its proof is deferred to Section 7.2.

Theorem 3 (well-definedness of Algorithm 2). Suppose that Assumption 1 holds and that xk satisfying

‖∇f(xk)‖ > ǫ is generated by Algorithm 2. Let

T := | log(γν(ǫ)/γ−1)/ log θ|+ 1, γ̄ν(ǫ) := max{γ−1, θγν(ǫ)}, (21)

where γν(ǫ) is defined as in (9), and γ−1 and θ are inputs of Algorithm 2. Then the number of calls of Algorithm 4

at iteration k of Algorithm 2 is bounded above by T . Moreover, γk ≤ γ̄ν(ǫ).

The next theorem states the iteration and operation complexity of Algorithm 2. Its proof is deferred to

Section 7.2.

Theorem 4 (iteration and operation complexity of Algorithm 2). Suppose that Assumption 1 holds.

Let

K2 =
⌈
72(f(x0)− flow)[γ̄ν(ǫ)]

1/2ǫ−3/2
⌉
+ 1, (22)

where flow and γ̄ν(ǫ) are given in (4) and (21), respectively. Then the following statements hold.

(i) Algorithm 2 terminates in at most K2 iterations.

(ii) The total main operations of Algorithm 2 consist of

Õ
(
TK2min

{
n, ǫ−1K

−1/2
2

})

gradient evaluations and Hessian-vector products of f , where T is defined in (21).

Remark 3. From Theorem 4, we see that Algorithm 2 achieves an iteration and operation complexity of

O
(
H

1
1+ν

ν ǫ−
2+ν

1+ν

)
and Õ

(
H

1
1+ν

ν ǫ−
2+ν

1+ν min
{
n, (Hνǫ

ν)−
1

2(1+ν)

})
(23)

for finding an ǫ-FOSP of problem (1), respectively. In particular, the iteration complexity in (23) has been shown

to be optimal in [11] and has also been achieved by the cubic regularized Newton method in [16]. Algorithm 2

is the first parameter-free second-order method that achieves the best-known iteration and operation complexity

for finding an ǫ-FOSP of nonconvex unconstrained optimization problems with Hölder continuous Hessians.

When ν = 1, the complexity results in (23) recover the iteration and operation complexity of O(ǫ−3/2) and

Õ(ǫ−3/2 min{n, ǫ−1/4}), respectively, established for the Newton-CG method in [28] for finding an ǫ-FOSP,

which are the best-known results for second-order methods.

5 A Newton-CG method for seeking an SOSP

In this section we propose a Newton-CG method in Algorithm 3 for seeking an (ǫg, ǫH)-SOSP of problem (1)

that satisfies

‖∇f(x)‖ ≤ ǫg, λmin(∇2f(x)) ≥ −ǫH ,

where ǫg, ǫH ∈ (0, 1) are tolerances. We also establish the iteration and operation complexity of this algorithm

under Assumption 1 with ν ∈ (0, 1].

We first review the minimum eigenvalue oracle that will be used in Algorithm 3. This oracle was proposed

in [28] to check whether a direction of sufficiently negative curvature exists for a given symmetric matrix H . It

either produces a sufficiently negative curvature direction v of H with ‖v‖ = 1 and vTHv ≤ −ǫH/2 or certifies

that λmin(H) ≥ −ǫH holds with high probability. For ease of reference, we present the minimum eigenvalue

oracle in Algorithm 3 in Appendix B.

7

We now describe the Newton-CG method (Algorithm 3) for seeking an (ǫg, ǫH)-SOSP of problem (1). At

each iteration k, this algorithm starts by checking whether the current iterate xk satisfies ‖∇f(xk)‖ ≤ ǫg. If

not, then this algorithm updates the next iterate xk+1 in the same manner as Algorithm 1 with ǫ replaced

by ǫg. Specifically, the capped CG method (Algorithm 4) is applied to the damped Newton system (8) with

ǫ replaced by ǫg to obtain an inexact Newton direction or a sufficiently negative curvature direction, and

the next iterate xk+1 is generated accordingly. Otherwise, if ‖∇f(xk)‖ > ǫg, the minimum eigenvalue oracle

(Algorithm 5) is invoked to check whether a direction of sufficiently negative curvature exists for the Hessian

∇2f(xk). Specifically, this oracle either produces a sufficiently negative curvature direction of ∇2f(xk) and

computes the next iterate xk+1, or certifies that the minimum eigenvalue of ∇2f(xk) is larger than −ǫH and

terminates this algorithm.

Algorithm 3 A Newton-CG method for seeking an (ǫg, ǫH)-SOSP of (1)

input: tolerances ǫg, ǫH ∈ (0, 1), starting point x0, CG-accuracy parameter ζ ∈ (0, 1), γν(ǫg) given in (9);

for k = 0, 1, 2, . . . do

if ‖∇f(xk)‖ > ǫg then

Call Algorithm 4 (Appendix A) with H = ∇2f(xk), ε =
√

γν(ǫg)ǫg, g = ∇f(xk), accuracy parameter ζ, and

U = 0 to obtain outputs d, d type;

if d type=NC then

Set

dk = − sgn(dT∇f(xk))
|dT∇2f(xk)d|

‖d‖3
d and αk = 1/γν(ǫg); (24)

else {d type=SOL}

Set

dk = d and αk = min

{

1,
[ǫg/γν(ǫg)]

1/4

2‖d‖1/2

}

; (25)

end if

else

Call Algorithm 5 (Appendix B) with H = ∇2f(xk) and ε = ǫH , and probability parameter δ;

if Algorithm 5 certifies that λmin(∇
2f(xk)) ≥ −ǫH then

Output xk and terminates;

else {Sufficiently negative curvature direction v returned by Algorithm 5}

Set

dk = − sgn(vT∇f(xk))|vT∇2f(xk)v|v and αk = (ǫH/2)(1−ν)/ν/(2Hν)
1/ν ; (26)

end if

end if

Set xk+1 = xk + αkd
k;

end for

The following lemma shows that f is nonincreasing along the iterates generated by Algorithm 3, whose proof

is deferred to Section 7.3.

Theorem 5 (monotonicity of Algorithm 3). Suppose that Assumption 1 holds with ν ∈ (0, 1]. Let {xk}k∈K3

be all the iterates generated by Algorithm 3, where K3 is a subset of consecutive nonnegative integers starting

from 0. Then {f(xk)}k∈K3 is nonincreasing.

The following theorem states the iteration and operation complexity of Algorithm 3, whose proof is relegated

to Section 7.3.

Theorem 6 (complexity of Algorithm 3). Suppose that Assumption 1 holds with ν ∈ (0, 1]. Let

K̃1 =
⌈
144(f(x0)− flow)[γν(ǫg)]

1/2ǫ−3/2
g

⌉
+
⌈
4(f(x0)− flow)(ǫH/2)

−(2+ν)/ν/(2Hν)
2/ν
⌉
+ 1, (27)

K̃2 =
⌈
4(f(x0)− flow)(ǫH/2)

−(2+ν)/ν/(2Hν)
2/ν
⌉
+ 1, (28)

where flow and γν(·) are defined in (4) and (9), respectively. Then the following statements hold.

8

(i) The total number of calls of Algorithm 5 is at most K̃2.

(ii) The total number of calls of Algorithm 4 is at most K̃1.

(iii) Algorithm 3 terminates in at most K̃1 + K̃2 iterations. Its output xk satisfies ‖∇f(xk)‖ ≤ ǫg determin-

istically for some k ≤ K̃1 + K̃2. Moreover, it satisfies λmin(∇2f(xk)) ≥ −ǫH with probability at least

1− δ.

(iv) The total main operations of Algorithm 3 consist of

Õ
(
min

{
n, [γν(ǫg)ǫg]

−1/4
}
K̃1 +min

{
n, ǫ

−1/2
H

}
K̃2

)

gradient evaluations and Hessian-vector products of f .

Remark 4. From Theorem 6, we observe that Algorithm 3 achieves an iteration and operation complexity of

O
(
H

1
1+ν

ν ǫ
−

2+ν

1+ν

g +H
2
ν

ν ǫ
−

2+ν

ν

H

)
and (29)

Õ
((

H
1

1+ν

ν ǫ
−

2+ν

1+ν

g +H
2
ν

ν ǫ
−

2+ν

ν

H

)
min

{
n, (Hνǫ

ν
g)

− 1
2(1+ν)

}
+H

2
ν

ν ǫ
−

2+ν

ν

H min
{
n, ǫ

− 1
2

H

})
(30)

for finding an (ǫg, ǫH)-SOSP of problem (1) with high probability, respectively. When ν = 1, the iteration and

operation complexity results in (29) and (30) reduce to O(ǫ
−3/2
g + ǫ−3

H) and Õ((ǫ
−3/2
g + ǫ−3

H)min{n, ǫ−1/4
g } +

ǫ−3
H min{n, ǫ−1/2

H }), respectively, which retain or improve the complexity results of the Newton-CG method in

[28] for finding an (ǫg, ǫH)-SOSP.

6 Numerical results

In this section, we conduct some preliminary numerical experiments to test the performance of our parameter-

free Newton-CG method (Algorithm 2) and the cubic regularized Newton method with line search (Universal

Method II) in [16]. All the algorithms are coded in Matlab and all the computations are performed on a desktop

with a 3.79 GHz AMD 3900XT 12-Core processor and 32 GB of RAM.

6.1 Infeasibility detection

In this subsection, we consider the problem of infeasibility detection (see [5]):

min
x∈R

n

m∑

i=1

(
xTAix+ bTi x+ ci

)p
+
, (31)

where p > 2, Ai ∈ R
n×n, bi ∈ R

n, and ci ∈ R for 1 ≤ i ≤ m.

For each pair (n,m, p), we randomly generate 10 instances of problem (31). In particular, we first randomly

generate Ai = UiDiU
T
i , 1 ≤ i ≤ m, where the Di is a randomly generated diagonal matrix, and Ui is a randomly

generated orthogonal matrix. Each diagonal element of Di, 1 ≤ i ≤ n, is uniformly distributed over [−1, n− 1].

We then randomly generate bi, 1 ≤ i ≤ m, with each component according to the uniform distribution over

[0, n], and fix ci = 1 for 1 ≤ i ≤ m.

Our aim is to find a 10−4-FOSP of problem (31) for the above instances by Algorithm 2 and the cubic

regularized Newton method with line search in [16] and compare their performance. For the latter method, we

adopt the approach proposed in [26] to solve its cubic regularized subproblems. For both methods, we choose

the initial point as x0 = (0, . . . , 0)T , and the other parameters as

• (ζ, γ−1, θ) = (0.5, 10, 2) for Algorithm 2;

• H0 = 10 for the cubic regularized Newton method ([16]).

9

Objective value CPU time (seconds) Total subproblems

n m p Algorithm 2 CRN-LS Algorithm 2 CRN-LS Algorithm 2 CRN-LS

100 2 2.25 4.5×10−14 1.4×10−14 1.1 4.7 163.1 168.0

100 2 2.5 3.9×10−13 1.5×10−13 0.93 4.8 142.2 185.3

100 2 2.75 1.8×10−12 1.5×10−12 0.89 4.4 125.7 197.2

100 2 3 6.8×10−12 3.7×10−12 0.90 4.6 112.9 206.7

300 6 2.25 8.4×10−16 1.1×10−15 15.6 68.8 221.9 348.2

300 6 2.5 1.2×10−14 1.9×10−15 15.5 69.9 185.0 384.5

300 6 2.75 7.8×10−14 4.1×10−14 15.5 68.6 168.2 400.0

300 6 3.0 3.3×10−13 1.7×10−13 15.1 68.0 153.7 418.0

500 10 2.25 1.7×10−16 5.0×10−17 67.6 335.1 247.6 457.0

500 10 2.5 3.5×10−15 3.1×10−15 66.6 327.9 210.4 494.5

500 10 2.75 2.1×10−14 6.7×10−15 66.7 338.1 191.3 517.0

500 10 3 9.7×10−14 3.6×10−14 64.0 328.5 179.5 539.0

Table 1: Numerical results for problem (31)

Objective value CPU time (seconds) Total subproblems

n m p Algorithm 2 CRN-LS Algorithm 2 CRN-LS Algorithm 2 CRN-LS

100 20 2.25 2.1 2.9 0.36 5.6 102.9 135.9

100 20 2.5 2.0 2.2 0.32 5.7 119.2 147.8

100 20 2.75 2.2 3.3 0.41 6.2 130.3 168.6

100 20 3 2.6 2.7 0.40 6.8 131.0 184.2

500 100 2.25 9.6 12.9 10.0 309.5 230.6 292.3

500 100 2.5 10.2 14.6 10.8 411.9 249.4 382.8

500 100 2.75 10.8 11.6 13.6 522.3 308.2 480.7

500 100 3 11.4 14.4 15.2 555.0 357.4 508.5

1000 200 2.25 19.3 26.2 40.3 2083.6 312.8 702.0

1000 200 2.5 20.4 25.2 56.0 2453.0 406.8 821.3

1000 200 2.75 21.2 31.8 78.3 2895.1 539.7 956.5

1000 200 3.0 22.2 22.5 84.3 3180.3 619.2 1066.2

Table 2: Numerical results for problem (32)

The computational results of Algorithm 2 and the cubic regularized Newton method in [16] (abbreviated

as CRN-LS) for solving problem (31) for the instances randomly generated above are presented in Table 1. In

detail, the values of n, m, and p are listed in the first two columns, respectively. For each triple (n,m, p),

the average final objective value, the average CPU time, and the average total number of subproblems over 10

random instances are given in the rest of the columns. Here, one subproblem refers to one cubic regularized

subproblem solved by the cubic regularized method or one damped Newton system solved by Algorithm 2.

One can observe that both methods output an approximate solution of a similar objective, while Algorithm 2

substantially outperforms the cubic regularized Newton method in [16] in terms of CPU time.

6.2 Single-layer neural networks

In this subsection, we consider the problem of training single-layer RePu neural networks (see [21]):

min
x∈Rn

m∑

i=1

φ((aTi x)
p
+ − bi), (32)

where p > 2, φ(t) = t2/(1 + t2) is a nonconvex loss function (see [3, 7]), ai ∈ R
n, and bi ∈ R for 1 ≤ i ≤ m.

For each triple (n,m, p), we randomly generate 10 instances of problem (32). In particular, we first randomly

generate ai, 1 ≤ i ≤ m, with all its components following the standard normal distribution. We then randomly

generate b̄i, 1 ≤ i ≤ m, according to the standard normal distribution, and set bi = |b̄i| for 1 ≤ i ≤ m.

10

Our goal is to find a 10−4-FOSP of problem (32) for the above instances by Algorithm 2 and the cubic

regularized Newton method with line search in [16] and compare their performance. For the latter method, we

adopt the approach proposed in [26] to solve its cubic regularized subproblems. For both methods, we choose the

initial iterate as x0 = (1/n, . . . , 1/n)T , and set the other parameters for Algorithm 2 and the cubic regularized

Newton method the same as those described in Subsection 6.1.

The computational results of Algorithm 2 and the cubic regularized Newton method in [16] for solving

problem (32) for the instances randomly generated above are presented in Table 2. In detail, the value of n,

m, and p are listed in the first three columns, respectively, For each triple (n,m, p), the average final objective,

the average CPU time, and the average total number of subproblems over 10 random instances are given in

the rest of the columns. Here, one subproblem refers to one cubic regularized subproblem solved by the cubic

regularized method or one damped Newton system solved by Algorithm 2. One can observe that Algorithm 2

finds a 10−4-FOSP of (32) substantially faster than the cubic regularized Newton method in [16].

7 Proof of the main results

In this section we provide a proof of our main results presented in Sections 3, 4 and 5, which are particularly

Theorems 1-6.

To start with, let us establish two technical lemmas. The following lemma provides us with an inexact oracle

that our analysis relies heavily on. This result is inspired by the inexact oracle introduced by Nesterov in [25]

for first-order methods in solving convex optimization problems with Hölder continuous gradient.

Lemma 1. Under Assumption 1(b), the following inequalities hold for any δ > 0:

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖ ≤ 1

2
L1(δ)‖y − x‖2 + δ, ∀x, y ∈ Ω, (33)

f(y) ≤ f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x) +

1

3
L2(δ)‖y − x‖3 + δ, ∀x, y ∈ Ω. (34)

where

L1(δ) =

[
1− ν

1 + ν
· 1

2δ

] 1−ν

1+ν

H
2

1+ν

ν , L2(δ) =

[
1− ν

2 + ν
· 1

3δ

] 1−ν

2+ν

[
Hν

1 + ν

] 3
2+ν

.4 (35)

Proof. The proof of (33) is identical to the one of [25, Lemma 2], and thus omitted here.

We next prove (34). When ν = 1, it follows from (6) that (34) holds. We suppose for the rest of the proof

that ν ∈ [0, 1). Recall that all τ, s ≥ 0 satisfy the Young’s inequality

τs ≤ 1

p
τp +

1

q
sq,

where p, q ≥ 1 and 1/p+ 1/q = 1. Taking τ = t2+ν , p = 3/(2 + ν), and q = 3/(1− ν), we obtain that

t2+ν ≤ 2 + ν

3s
t3 +

1− ν

3
s

2+ν

1−ν , ∀t ≥ 0, s > 0. (36)

Let us denote δ = (1−ν)Hν

3(1+ν)(2+ν)s
2+ν

1−ν . Then s =
[
3(1+ν)(2+ν)δ

(1−ν)Hν

] 1−ν

2+ν

. Multiplying both sides of (36) by Hν

(1+ν)(2+ν)

and taking t = ‖y − x‖, we obtain that

Hν‖y − x‖2+ν

(1 + ν)(2 + ν)
≤ Hν‖y − x‖3

3(1 + ν)s
+ δ ≤ 1

3

[
1− ν

2 + ν
· 1

3δ

] 1−ν

2+ν

[
Hν

1 + ν

] 3
2+ν

‖y − x‖3 + δ,

which along with (6) and (35) implies that (34) holds as desired.

The following lemma provides useful properties of L1(·) and L2(·).
4By convention, 00 is set to 1 throughout this paper.

11

Lemma 2. For any c1 ≥ 2 and c2 ≥ 3, we have

L1(ǫ/c1) ≤ c1γν(ǫ)/8, (37)

L2(ǫ
3/2/(c2γ

1/2)) ≤
√
6c2γ/12, ∀γ ≥ γν(ǫ), (38)

where L1(·) and L2(·) are defined in (35), and γν(·) is defined in (9).

Proof. We first prove (37). By c1 ≥ 2, ν ∈ [0, 1], (9), and (35), one has

L1

(
ǫ

c1

)
=

[
1− ν

1 + ν
· c1
2ǫ

] 1−ν

1+ν

H
2

1+ν

ν ≤
(c1
2

) 1−ν

1+ν

H
2

1+ν

ν ǫ−
1−ν

1+ν ≤ c1
2
H

2
1+ν

ν ǫ−
1−ν

1+ν

(9)
=
c1
8
γν(ǫ),

where the first equality is follows from the definition of L1(·), the first inequality is due to ν ∈ [0, 1] and aa ≤ 1

for all a ∈ [0, 1], and the second inequality is due to ν ∈ [0, 1] and c1 ≥ 2. Hence, (37) holds as desired.

We next prove (38). By c2 ≥ 3, ν ∈ [0, 1], (9), and γ ≥ γν(ǫ), one has

[
1− ν

2 + ν
· c2
3ǫ3/2

] 1−ν

2+ν

[
Hν

1 + ν

] 3
2+ν

≤
√
c2
3
H

3
2+ν

ν ǫ−
3(1−ν)
2(2+ν)

(9)
=

√
c2
3

[
γν(ǫ)

4

] 3(1+ν)
2(2+ν)

≤
√
6c2
12

γ
3(1+ν)
2(2+ν) ,

where the first inequality follows from ν ∈ [0, 1], c2 ≥ 3, and aa ≤ 1 for all a ∈ [0, 1], and the last inequality is

due to ν ∈ [0, 1] and γ ≥ γν(ǫ). Dividing both sides of this inequality by γ(ν−1)/[2(2+ν)] and using the definition

of L2(·), we obtain that

L2

(
ǫ3/2

c2γ1/2

)
=

[
1− ν

2 + ν
· c2
3ǫ3/2

] 1−ν

2+ν

[
Hν

1 + ν

] 3
2+ν

γ
1−ν

2(2+ν) ≤
√
6c2
12

γ.

Hence, (38) holds as desired.

7.1 Proof of the main results in Section 3

In this subsection, we first establish several technical lemmas and then use them to prove Theorems 1 and 2.

The following lemma provides some useful properties of the output of Algorithm 4, whose proof is similar

to the ones of [28, Lemma 3] and [27, Lemma 7] and thus omitted here.

Lemma 3. Suppose that Assumption 1 holds and the direction dk results from the output d of Algorithm 4 with

a type specified in d type at some iteration k of Algorithm 1. Then the following statements hold.

(i) If d type=SOL, then dk satisfies

√
γν(ǫ)ǫ‖dk‖2 ≤ (dk)T (∇2f(xk) + 2

√
γν(ǫ)ǫI)d

k, (39)

(dk)T∇f(xk) = −(dk)T (∇2f(xk) + 2
√
γν(ǫ)ǫI)d

k, (40)

‖(∇2f(xk) + 2
√
γν(ǫ)ǫI)d

k +∇f(xk)‖ ≤ ζ
√
γν(ǫ)ǫ‖dk‖/2. (41)

(ii) If d type=NC, then dk satisfies (dk)T∇f(xk) ≤ 0 and

(dk)T∇2f(xk)dk/‖dk‖2 = −‖dk‖ ≤ −
√
γν(ǫ)ǫ. (42)

We now provide a proof of Theorem 1.

Proof of Theorem 1. We prove this theorem by induction. Let xk, xk+1 be two consecutive iterates generated

by Algorithm 1, and suppose that {f(xℓ)}0≤ℓ≤k is nonincreasing. We next prove f(xk+1) ≤ f(xk). Suppose for

contradiction that f(xk+1) > f(xk). Denote ϕ(α) = f(xk +αdk). These together with xk+1 = xk +αkd
k imply

ϕ(αk) > ϕ(0). Below, we show that ϕ(αk) > ϕ(0) leads to a contradiction by considering two separate cases.

12

Case 1) d type=SOL. In this case, we see from Lemma 3(i) that (39)-(41) hold for dk. Also, observe from

Algorithm 1 that ‖∇f(xk)‖ > ǫ, which together with (41) implies that dk 6= 0. By this, (39), and (40), one has

ϕ′(0) = ∇f(xk)T dk (40)
= −(dk)T (∇2f(xk) + 2

√
γν(ǫ)ǫI)d

k
(39)

≤ −
√
γν(ǫ)ǫ‖dk‖2 < 0.

Using these and the fact that ϕ(αk) > ϕ(0), we can observe that there exists a local minimizer α∗ ∈ (0, αk) of

ϕ such that ϕ′(α∗) = ∇f(xk + α∗d
k)Tdk = 0 and ϕ(α∗) < ϕ(0), which implies that f(xk + α∗d

k) < f(xk) ≤
f(x0). Hence, (5) holds for x = xk and y = xk + α∗d

k. Using this, 0 < α∗ < αk ≤ 1, (39), (40), and

∇f(xk + α∗d
k)T dk = 0, we deduce that

α1+ν

∗
Hν

1+ν ‖dk‖2+ν
(5)

≥ ‖dk‖‖∇f(xk + α∗d
k)−∇f(xk)− α∗∇2f(xk)dk‖

≥ (dk)T (∇f(xk + α∗d
k)−∇f(xk)− α∗∇2f(xk)dk) = −(dk)T∇f(xk)− α∗(d

k)T∇2f(xk)dk

(40)
= (1 − α∗)(d

k)T (∇2f(xk) + 2
√
γν(ǫ)ǫI)d

k + 2α∗

√
γν(ǫ)ǫ‖dk‖2

(39)

≥ (1 + α∗)
√
γν(ǫ)ǫ‖dk‖2 ≥

√
γν(ǫ)ǫ‖dk‖2,

which together with dk 6= 0 and αk > α∗ implies that α1+ν
k Hν‖dk‖ν/(1 + ν) >

√
γν(ǫ)ǫ. By this and the

definition of αk in (12), one has

√
γν(ǫ)ǫ <

α1+ν
k Hν‖dk‖ν

1 + ν
=

Hν

1 + ν
min

{
‖dk‖ν , [ǫ/γν(ǫ)]

1+ν

4

21+ν‖dk‖ 1−ν

2

}
≤ Hν

1 + ν

[ǫ/γν(ǫ)]
ν

2

4ν
≤ Hν

[
ǫ

γν(ǫ)

] ν

2

where the first equality follows from the definition of αk, the second inequality is due to min{a, b} ≤ a
1−ν

1+ν b
2ν

1+ν

for all a, b > 0, and the last inequality is due to ν ∈ [0, 1]. Rearranging the terms of this inequality, we obtain

that

γν(ǫ) < H
2

1+ν

ν ǫ−
1−ν

1+ν (43)

which contradicts the definition of γν(ǫ) in (9).

Case 2) d type=NC. In this case, we observe from Lemma 3(ii) that

∇f(xk)T dk ≤ 0, (dk)T∇2f(xk)dk/‖dk‖2 = −‖dk‖ ≤ −
√
γν(ǫ)ǫ < 0. (44)

By this and the definition of ϕ, one has ϕ′(0) = ∇f(xk)Tdk ≤ 0 and ϕ′′(0) = (dk)T∇2f(xk)dk < 0. Using

these and the fact that ϕ(αk) > ϕ(0), we observe that there exists a local minimizer α∗ ∈ (0, αk) of ϕ such that

ϕ(α∗) < ϕ(0), namely, f(xk + α∗d
k) < f(xk). By the second-order optimality condition of ϕ at α∗, one has

ϕ′′(α∗) = (dk)T f(xk + α∗d
k)dk ≥ 0. Since f(xk + α∗d

k) < f(xk) ≤ f(x0), it follows that (3) holds for x = xk

and y = xk + α∗d
k. Using this, the second relation in (44) and (dk)T∇2f(xk + α∗d

k)dk ≥ 0, we obtain that

Hνα
ν
∗‖dk‖2+ν ≥ ‖dk‖2‖∇2f(xk + α∗d

k)−∇2f(xk)‖ ≥ (dk)T (∇2f(xk + α∗d
k)−∇2f(xk))dk

≥ −(dk)T∇2f(xk)dk = ‖dk‖3. (45)

Recall from (44) that ‖dk‖ ≥
√
γν(ǫ)ǫ > 0. Using this, αk > α∗, (45), and αk = 1/γν(ǫ), we deduce that

Hν/γν(ǫ)
ν = Hνα

ν
k ≥ Hνα

ν
∗

(45)

≥ ‖dk‖1−ν ≥ [γν(ǫ)ǫ]
1−ν

2 .

Rearranging the terms of this inequality, we obtain that

γν(ǫ) ≤ H
2

1+ν

ν ǫ−
1−ν

1+ν , (46)

which contradicts the definition of γν(ǫ) in (9).

Combining the above two cases, we conclude that f(xk+1) ≤ f(xk), and hence {f(xk)}k∈K1 is nonincreasing.

Our next lemma shows that when the search direction dk in Algorithm 1 is of type ‘SOL’, the next iterate

xk+1 produces a sufficient decrease in f .

13

Lemma 4. Suppose that Assumption 1 holds and the direction dk results from the output d of Algorithm 4 with

d type=SOL at some iteration k of Algorithm 1. Then xk+1 = xk + αkd
k satisfies either ‖∇f(xk+1)‖ ≤ ǫ or

f(xk)− f(xk+1) ≥ ǫ3/2/(144γν(ǫ)
1/2). (47)

Proof. Since d type=SOL, we see from Lemma 3(i) that (39)-(41) hold for dk. Recall from Theorem 1 that

{f(xk)}k∈K1 is nonincreasing. Thus, f(xk + αkd
k) = f(xk+1) ≤ f(xk). In view of this, we see that (33) and

(34) hold for y = xk + αkd
k and x = xk. By (34), xk+1 = xk + αkd

k, αk ∈ (0, 1], (39), and (40), one has that

for any δ > 0,

f(xk+1)− f(xk)
(34)

≤ αk∇f(xk)Tdk +
α2
k

2
(dk)T∇2f(xk)dk +

1

3
L2(δ)α

3
k‖dk‖3 + δ

(40)
= −αk(d

k)T (∇2f(xk) + 2
√
γν(ǫ)ǫI)d

k +
α2
k

2
(dk)T∇2f(xk)dk +

1

3
L2(δ)α

3
k‖dk‖3 + δ

= −αk

(
1− αk

2

)
(dk)T (∇2f(xk) + 2

√
γν(ǫ)ǫI)d

k − α2
k

√
γν(ǫ)ǫ‖dk‖2 +

1

3
L2(δ)α

3
k‖dk‖3 + δ

(39)

≤ −αk

√
γν(ǫ)ǫ‖dk‖2 +

1

3
L2(δ)α

3
k‖dk‖3 + δ. (48)

Notice that if ‖∇f(xk+1)‖ ≤ ǫ, the conclusion of this lemma holds. Hence, it suffices to consider the case where

‖∇f(xk+1)‖ > ǫ. We next show that (47) holds in this case by considering two separate below.

Case 1) αk = 1. It follows from the definition of αk in (12) that
√
ǫ/γν(ǫ) ≥ 4‖dk‖. In addition, notice from

(37) with c1 = 2 that L1(ǫ/2) ≤ γν(ǫ)/4. In view these, ‖∇f(xk+1)‖ > ǫ, (33), and (41), we have

ǫ < ‖∇f(xk+1)‖ = ‖∇f(xk + dk)‖
≤ ‖∇f(xk + dk)−∇f(xk)−∇2f(xk)dk‖+ ‖(∇2f(xk) + 2

√
γν(ǫ)ǫI)d

k +∇f(xk)‖+ 2
√
γν(ǫ)ǫ‖dk‖

(33)(41)

≤ L1(ǫ/2)

2
‖dk‖2 + ǫ

2
+
ζ + 4

2

√
γν(ǫ)ǫ‖dk‖ ≤

(
L1(ǫ/2)

8

√
ǫ

γν(ǫ)
+
ζ + 4

2

√
γν(ǫ)ǫ

)
‖dk‖+ ǫ

2

≤
(

1

32
+
ζ + 4

2

)√
γν(ǫ)ǫ‖dk‖+

ǫ

2
≤ 3
√
γν(ǫ)ǫ‖dk‖+

ǫ

2
,

where the fourth inequality is due to 4‖dk‖ ≤
√
ǫ/γν(ǫ), the fifth inequality is follows from L1(ǫ/2) ≤ γν(ǫ)/4,

and the last inequality is due to ζ ∈ (0, 1). It then follows that 6‖dk‖ ≥
√
ǫ/γν(ǫ). Notice from (38) with

c2 = 144 and γ = γν(ǫ) that L2(ǫ
3/2/(144γν(ǫ)

1/2)) ≤
√
6γν(ǫ). Using these,

√
ǫ/γν(ǫ) ≥ 4‖dk‖, αk = 1, and

(48), we further deduce that

f(xk+1)− f(xk)
(48)

≤ −
√
γν(ǫ)ǫ‖dk‖2 +

L2(ǫ
3/2/(144γν(ǫ)

1/2))

12

√
ǫ

γν(ǫ)
‖dk‖2 + ǫ3/2

144γν(ǫ)1/2

≤ −
(
1−

√
6

12

)
√
γν(ǫ)ǫ‖dk‖2 +

ǫ3/2

144γν(ǫ)1/2
≤ −

√
γν(ǫ)ǫ

2
‖dk‖2 + ǫ3/2

144γν(ǫ)1/2
≤ − ǫ3/2

144γν(ǫ)1/2
,

where the second inequality is due to L2(ǫ
3/2/(144γν(ǫ)

1/2)) ≤
√
6γν(ǫ), and the last inequality follows from

6‖dk‖ ≥
√
ǫ/γν(ǫ). Hence, (47) holds as desired.

Case 2) αk < 1. It follows from the definition of αk in (12) that 4‖dk‖ ≥
√
ǫ/γν(ǫ). Recall from (38) with

c2 = 64 and γ = γν(ǫ) that L2(ǫ
3/2/(64γν(ǫ)

1/2)) ≤ 2
√
6γν(ǫ)/3. By these, the definition of αk in (12), and

(48), we deduce that

f(xk+1)− f(xk)
(48)

≤ −αk

√
γν(ǫ)ǫ‖dk‖2 +

L2(ǫ
3/2/(64γν(ǫ)

1/2))

3
α3
k‖dk‖3 +

ǫ3/2

64γν(ǫ)1/2

= − ǫ
3/4γν(ǫ)

1/4

2
‖dk‖3/2 + L2(ǫ

3/2/(64γν(ǫ)
1/2))

24

(
ǫ

γν(ǫ)

)3/4

‖dk‖3/2 + ǫ3/2

64γν(ǫ)1/2

≤ −
(
1

2
−

√
6

36

)
ǫ3/4γν(ǫ)

1/4‖dk‖3/2 + ǫ3/2

64γν(ǫ)1/2
≤ − ǫ

3/4γν(ǫ)
1/4

4
‖dk‖3/2 + ǫ3/2

64γν(ǫ)1/2
≤ − ǫ3/2

64γν(ǫ)1/2
,

14

where the first equality is due to the definition of αk, the second inequality is due to L2(ǫ
3/2/(64γν(ǫ)

1/2)) ≤
2
√
6γν(ǫ)/3, and the last inequality follows from 4‖dk‖ ≥

√
ǫ/γν(ǫ). Hence, (47) holds as desired.

The following lemma shows that when the search direction dk in Algorithm 1 is of type ‘NC’, the next iterate

xk+1 produces a sufficient decrease in f .

Lemma 5. Suppose that Assumption 1 holds and the direction dk results from the output d of Algorithm 4 with

d type=NC at some iteration k of Algorithm 1. Then xk+1 = xk + αkd
k satisfies

f(xk)− f(xk+1) ≥ ǫ3/2/(12γν(ǫ)
1/2). (49)

Proof. Since d type=NC, we see from Lemma 3(ii) that

∇f(xk)T dk ≤ 0, (dk)T∇2f(xk)dk/‖dk‖2 = −‖dk‖ ≤ −
√
γν(ǫ)ǫ. (50)

Recall from Theorem 1 that {f(xk)}k∈K1 is nonincreasing. Thus, f(xk + αkd
k) = f(xk+1) ≤ f(xk). Using this,

we see that (34) holds for y = xk + αkd
k and x = xk. Also, notice from (38) with c2 = 12 and γ = γν(ǫ) that

L2(ǫ
3/2/(12γν(ǫ)

1/2)) ≤
√
2γν(ǫ)/2. Combining these with (50) and αk = 1/γν(ǫ), we deduce that

f(xk+1)− f(xk)
(34)

≤ αk∇f(xk)Tdk +
α2
k

2
(dk)T∇2f(xk)dk +

L2(ǫ
3/2/(12γν(ǫ)

1/2))

3
α3
k‖dk‖3 +

ǫ3/2

12γν(ǫ)1/2

(50)

≤ − α2
k

2
‖dk‖3 + L2(ǫ

3/2/(12γν(ǫ)
1/2))

3
α3
k‖dk‖3 +

ǫ3/2

12γν(ǫ)1/2

= − 1

2γν(ǫ)2
‖dk‖3 + L2(ǫ

3/2/(12γν(ǫ)
1/2))

3γν(ǫ)3
‖dk‖3 + ǫ3/2

12γν(ǫ)1/2

≤ −
(
1

2
−

√
2

6

)
1

γν(ǫ)2
‖dk‖3 + ǫ3/2

12γν(ǫ)1/2
≤ − 1

6γν(ǫ)2
‖dk‖3 + ǫ3/2

12γν(ǫ)1/2
≤ − ǫ3/2

12γν(ǫ)1/2
,

where the first equality is due to αk = 1/γν(ǫ), the third inequality follows from L2(ǫ
3/2/(12γν(ǫ)

1/2)) ≤√
2γν(ǫ)/2, and the last inequality follows from ‖dk‖ ≥

√
γν(ǫ)ǫ. Hence, (49) holds as desired.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Recall from Theorem 1 that f is nonincreasing along the iterates {xk}k∈K1 generated by

Algorithm 1, which immediately implies that xk ∈ {x : f(x) ≤ f(x0)} for all k ∈ K1. Using this and (4), we

have that ‖∇2f(xk)‖ ≤ UH for all k ∈ K1.

(i) Suppose for contradiction that the total number of iterations of Algorithm 1 is more than K1. Observe

from Algorithm 1 and Lemmas 4 and 5 that each iteration except the last one results in a reduction on the

function value of f at least by ǫ3/2/(144γν(ǫ)
1/2). Hence,

K1ǫ
3/2/(144γν(ǫ)

1/2) ≤
∑

k∈K1

[f(xk)− f(xk+1)] ≤ f(x0)− flow,

where K1 is given in Theorem 1. This leads to a contradiction with the definition of K1 in (13).

(ii) By Theorem 7 with (H, ε) = (∇2f(xk),
√
γν(ǫ)ǫ) and the fact that ‖∇2f(xk)‖ ≤ UH , we can observe

that the number of gradient evaluations and Hessian-vector products of f required by each call of Algorithm 4

in Algorithm 1 is at most Õ(min{n, [γν(ǫ)ǫ]−1/4}). Also, notice that each iteration of Algorithm 1 requires one

call of Algorithm 4. Combining these with statement (i), we see that statement (ii) holds.

7.2 Proof of the main results in Section 4

In this subsection, we provide a proof of Theorems 3 and 4.

The following lemma gives some useful properties of the output of Algorithm 4, which is identical to Lemma 3

with (xk, dk, γν(ǫ)) replaced by (x̃, d̃t, γ̃t).

15

Lemma 6. Suppose that Assumption 1 holds and the direction d̃t results from the output d of Algorithm 4 with

a type specified in d type at some iteration of Algorithm 2. Then the following statements hold.

(i) If d type=SOL, then d̃t satisfies

√
γ̃tǫ‖d̃t‖2 ≤ (d̃t)T (∇2f(x̃) + 2

√
γ̃tǫI)d̃

t, (51)

(d̃t)T∇f(x̃) = −(d̃t)T (∇2f(x̃) + 2
√
γ̃tǫI)d̃

t, (52)

‖(∇2f(x̃) + 2
√
γ̃tǫI)d̃

t +∇f(x̃)‖ ≤ ζ
√
γ̃tǫ‖d̃t‖/2. (53)

(ii) If d type=NC, then d̃t satisfies ∇f(x̃)T d̃t ≤ 0 and

(d̃t)T∇2f(x̃)d̃t/‖d̃t‖2 = −‖d̃t‖ ≤ −
√
γ̃tǫ. (54)

We now provide a proof of Theorem 3.

Proof of Theorem 3. Notice that if Algorithm 2 breaks the inner loop at t = 0, the conclusion of this theorem

clearly holds. We now suppose for the rest of the proof that Algorithm 2 does not break its inner loop at t = 0.

Claim that for all t ≥ 0 that Algorithm 2 does not break its inner loop, it holds that γ̃t ≤ γν(ǫ). Indeed, suppose

that Algorithm 2 does not break its inner loop for some t ≥ 0, and that d̃t along with d type is generated from

the output of Algorithm 4. Recall from Lemma 6 that if d type=SOL, then (51)-(53) hold for d̃t, and we see

from ‖∇f(xk)‖ > ǫ, x̃ = xk, and (53) that d̃t 6= 0. If d type=NC, we see from Lemma 6(ii) that d̃t 6= 0, and

moreover,

∇f(x̃)T d̃t ≤ 0, (d̃t)T∇2f(x̃)d̃t/‖d̃t‖2 = −‖d̃t‖ ≤ −
√
γ̃tǫ. (55)

We next show that γ̃t ≤ γν(ǫ) holds by considering five separate cases below.

Case 1) d type=SOL and f(x̃ + α̃td̃
t) > f(x̃). Since d type=SOL, we see that (51)-(53) hold for d̃t. Using

similar arguments as for (43) with (xk, dk, γν(ǫ)) replaced by (x̃, d̃t, γ̃t), we have that γ̃t ≤ H
2/(1+ν)
ν ǫ−(1−ν)/(1+ν).

Combining this with the definition of γν(ǫ) in (9), we obtain that γ̃t ≤ γν(ǫ).

Case 2) d type=SOL, f(x̃ + α̃td̃
t) ≤ f(x̃), and α̃t = 1. It follows from d type=SOL that (51)-(53) hold

for d̃t. Using α̃t = 1 and the definition of α̃t in (17), we have 4‖d̃t‖ ≤
√
ǫ/γ̃t. In addition, it follows from

f(x̃+ α̃td̃
t) ≤ f(x̃) and α̃t = 1 that (33) holds for y = x̃+ d̃t and x = x̃. Since Algorithm 2 does not break its

inner loop with α̃t = 1 and d̃t, we see that ‖∇f(x̃+ d̃t)‖ > ǫ. In view of these and (53), we see that

ǫ < ‖∇f(x̃+ d̃t)‖ ≤ ‖∇f(x̃+ d̃t)−∇f(x̃)−∇2f(x̃)d̃t‖
+ ‖(∇2f(x̃) + 2

√
γ̃tǫI)d̃

t +∇f(x̃)‖+ 2
√
γ̃tǫ‖d̃t‖

(33)(53)

≤ L1(ǫ/4)

2
‖d̃t‖2 + ǫ

4
+
ζ + 4

2

√
γ̃tǫ‖d̃t‖

≤ L1(ǫ/4)ǫ

32γ̃t
+
ǫ

4
+

(ζ + 4)ǫ

8
≤ L1(ǫ/4)ǫ

32γ̃t
+

7ǫ

8
,

where the fourth inequality is due to 4‖d̃t‖ ≤
√
ǫ/γ̃t, and the last inequality follows from ζ ∈ (0, 1). Rearranging

the terms of this inequality and using (37) with c1 = 4, we derive that

γ̃t ≤ L1(ǫ/4)/4 ≤ γν(ǫ)/8 < γν(ǫ),

where the second inequality is due to (37).

Case 3) d type=SOL, f(x̃ + α̃td̃
t) ≤ f(x̃), and α̃t < 1. Since d type=SOL, we see that (51)-(53) hold

for d̃t. Using α̃t < 1 and the definition of α̃t in (17), we have 4‖d̃t‖ >
√
ǫ/γ̃t. In addition, it follows from

f(x̃ + α̃td̃
t) ≤ f(x̃) that (34) holds for y = x̃ + α̃td̃

t and x = x̃. By the same arguments as for (48) with

(xk+1, xk, αk, d
k, γν(ǫ)) replaced by (x̃ + α̃td̃

t, x̃, α̃t, d̃
t, γ̃t), we can see that for any δ > 0,

f(x̃+ α̃td̃
t)− f(x̃) ≤ −α̃t

√
γ̃tǫ‖d̃t‖2 +

L2(δ)

3
α̃3
t ‖d̃t‖3 + δ, (56)

16

Since Algorithm 2 does not break its inner loop with d̃t and α̃t, we see that d̃t and α̃t violate (19). In view of

this, α̃t < 1, and the definition of α̃t in (17), 4‖d̃t‖ >
√
ǫ/γ̃t, and (56) with δ = ǫ3/2/(64γ̃

1/2
t), we see that

ǫ3/4γ̃
1/4
t ‖d̃t‖3/2
4

=

√
γ̃tǫα̃t‖d̃t‖2

2
≤ f(x̃+ α̃td̃

t)− f(x̃) + α̃t

√
γ̃tǫ‖d̃t‖2

(56)

≤ L2(ǫ
3/2/(64γ̃

1/2
t))

3
α̃3
t ‖d̃t‖3 +

ǫ3/2

64γ̃
1/2
t

=
L2(ǫ

3/2/(64γ̃
1/2
t))

24

(
ǫ

γ̃t

)3/4

‖d̃t‖3/2 + ǫ3/2

64γ̃
1/2
t

≤ L2(ǫ
3/2/(64γ̃

1/2
t))

24

(
ǫ

γ̃t

)3/4

‖d̃t‖3/2 + ǫ3/4γ̃
1/4
t ‖d̃t‖3/2
8

,

where the first and second equalities are due to the definition of α̃t in (17) and α̃t < 1, the first inequality is

due to the violation of (19), and the last inequality follows from 4‖d̃t‖ >
√
ǫ/γ̃t. Rearranging the terms of this

inequality and using the fact that ‖d̃t‖ 6= 0, we obtain that

L2(ǫ
3/2/(64γ̃

1/2
t)) ≥ 3γ̃t > 2

√
6γ̃t/3.

In view of this and (38) with c2 = 64, we see that γ̃t < γν(ǫ).

Case 4) d type=NC and f(x̃ + α̃td̃
t) > f(x̃). It follows from d type=NC that (55) holds. Using similar

arguments as for (46) with (xk, dk, γν(ǫ)) replaced by (x̃, d̃t, γ̃t), we obtain that γ̃t ≤ H
2/(1+ν)
ν ǫ−(1−ν)/(1+ν).

Combining this with the definition of γν(ǫ) in (9), we obtain that γ̃t ≤ γν(ǫ).

Case 5) d type=NC and f(x̃+ α̃td̃
t) ≤ f(x̃). It follows from d type=NC that (55) holds. In addition, since

Algorithm 2 does not break its inner loop with α̃t and d̃t, we see that α̃t and d̃t violate (16). By α̃t = 1/γ̃t,

f(x̃+ α̃td̃
t) ≤ f(x̃), one sees that (34) holds for y = x̃+ α̃td̃

t and x = x̃. In view of these, we have

− α̃
2
t‖d̃t‖3
6

< f(x̃+ α̃td̃
t)− f(x̃)

(34)

≤ α̃t∇f(x̃)T d̃t +
α̃2
t

2
(d̃t)T∇2f(x̃)d̃t +

L2(ǫ
3/2/(6γ̃

1/2
t))

3
α̃3
t ‖d̃t‖3 +

ǫ3/2

6γ̃
1/2
t

(55)

≤ − α̃
2
t

2
‖d̃t‖3 + L2(ǫ

3/2/(6γ̃
1/2
t))

3
α̃3
t‖d̃t‖3 +

ǫ3/2

6γ̃
1/2
t

= − 1

2γ̃2t
‖d̃t‖3 + L2(ǫ

3/2/(6γ̃
1/2
t))

3γ̃3t
‖d̃t‖3 + ǫ3/2

6γ̃
1/2
t

≤ − 1

3γ̃2t
‖d̃t‖3 + L2(ǫ

3/2/(6γ̃
1/2
t))

3γ̃3t
‖d̃t‖3,

where the first inequality is due the the violation of (16), the first equality is due to α̃t = 1/γ̃t, and the last

inequality follows from ‖d̃t‖ ≥ √
γ̃tǫ (see (55)). In view of this inequality and the fact that d̃t 6= 0, we see that

L2(ǫ
3/2/(6γ̃

1/2
t)) > γ̃t/2.

In view of this and (38) with c2 = 6, we see that γ̃t < γν(ǫ).

Combining the above five cases, we obtain that γ̃t ≤ γν(ǫ) holds if Algorithm 2 does not break its inner loop

with α̃t and d̃
t. By this and γ̃t = θtγ̃ ≥ θtγ−1, we see that the number of calls of Algorithm 4 at iteration k of

Algorithm 2 is bounded above by T . Suppose that γk = γ̃Tk
for some 1 ≤ Tk ≤ T . We see that Algorithm 2

does not break its inner loop at t = Tk − 1, which implies γk = θγ̃Tk−1 ≤ θγν(ǫ). Hence, the conclusion of this

theorem holds as desired.

The next lemma shows that when the search direction dk in Algorithm 2 is of type ‘SOL’, the next iterate

xk+1 produces a sufficient decrease in f .

Lemma 7. Suppose that Assumption 1 holds and the direction dk results from the output d of Algorithm 4 with

d type=SOL at some iteration k of Algorithm 2. Then xk+1 = xk + αkd
k satisfies either ‖∇f(xk+1)‖ ≤ ǫ or

f(xk)− f(xk+1) ≥ ǫ3/2/(72γ
1/2
k). (57)

17

Proof. Since d type=SOL, one can see from Algorithm 2 and Lemma 6(i) that (51)-(53) hold with (x̃, d̃t, γ̃t)

replaced by (xk, dk, γk). Notice that if ‖∇f(xk+1)‖ ≤ ǫ, the conclusion of this lemma holds. Hence, it suffices to

show that (57) holds if ‖∇f(xk+1)‖ > ǫ. To this end, we suppose for the rest of the proof that ‖∇f(xk+1)‖ > ǫ,

and consider two separate cases below.

Case 1) αk = 1. By this, (dk, αk, γk) = (d̃t, α̃t, γ̃t), and the definition of α̃t in (17), one has 4‖dk‖ ≤
√
ǫ/γk.

Since αk = 1 and ‖∇f(xk+1)‖ = ‖∇f(xk + dk)‖ > ǫ, we observe from Algorithm 2 that

f(xk+1) ≤ f(xk)−√
γkǫ‖dk‖2/2, (58)

‖∇f(xk + dk)−∇f(xk)−∇2f(xk)dk‖ ≤ 2γk‖dk‖2 + ǫ/2. (59)

In view of these, (x̃, d̃t, γ̃t) = (xk, dk, γk), and (53), we see that

ǫ < ‖∇f(xk + dk)‖ ≤ ‖∇f(xk + dk)−∇f(xk)−∇2f(xk)dk‖
+ ‖(∇2f(xk) + 2

√
γkǫI)d

k +∇f(xk)‖ + 2
√
γkǫ‖dk‖

(53)(59)

≤ 2γk‖dk‖2 +
ǫ

2
+

4 + ζ

2

√
γkǫ‖dk‖ ≤ 5 + ζ

2

√
γkǫ‖dk‖+

ǫ

2
,

where the last inequality follows from 4‖dk‖ ≤
√
ǫ/γk. It together with ζ ∈ (0, 1) follows that 6‖dk‖ ≥

√
ǫ/γk,

which along with (58) implies that f(xk)−f(xk+1) ≥ ǫ3/2/(72γ
1/2
k). Hence, the inequality (57) holds as desired.

Case 2) αk < 1. By this, (dk, αk, γk) = (d̃t, α̃t, γ̃t), and the definition of α̃t in (17), one has 4‖dk‖ >
√
ǫ/γk.

Since αk < 1, we see from Algorithm 2 that f(xk+1) ≤ f(xk) − √
γkǫα

2
k‖dk‖2/2. In view of these, and the

definition of αk in (17), we see that

f(xk)− f(xk+1) ≥ √
γkǫα

2
k‖dk‖2/2 = ǫ‖dk‖/8 > ǫ3/2/(32γ

1/2
k),

where the first equality is due to the definition of αk, and the last inequality follows from 4‖dk‖ >
√
ǫ/γk.

Hence, the inequality (57) holds as desired.

Our next lemma shows that when the search direction dk in Algorithm 2 is of type ‘NC’, the next iterate

xk+1 produces a sufficient decrease in f .

Lemma 8. Suppose that Assumption 1 holds and the direction dk results from the output d of Algorithm 4 with

d type=NC at some iteration k of Algorithm 2. Then xk+1 = xk + αkd
k satisfies

f(xk)− f(xk+1) ≥ ǫ3/2/(6γ
1/2
k). (60)

Proof. Since d type=NC, we see from Algorithm 2 and Lemma 6(ii) that

(dk)T∇2f(xk)dk/‖dk‖2 = −‖dk‖ ≤ −√
γkǫ. (61)

In addition, notice from Algorithm 2 that f(xk+1) ≤ f(xk) − α2
k‖dk‖3/6. Using this, ‖dk‖ ≥ √

γkǫ (see (61)),

and αk = 1/γk, we obtain that

f(xk)− f(xk+1) ≥ α2
k‖dk‖3/6 = ‖dk‖3/(6γ2k) ≥ ǫ3/2/(6γ

1/2
k),

where the last inequality is due to ‖dk‖ ≥ √
γkǫ. Hence, (60) holds as desired.

We are now ready to prove Theorem 4.

Proof of Theorem 4. For notational convenience, we let {xk}k∈K2 denote all the iterates generated by Algo-

rithm 2, where K2 is a set of consecutive nonnegative integers starting from 0. Notice that f is descent along

the iterates generated by Algorithm 2, which implies that xk ∈ {x : f(x) ≤ f(x0)} for all k ∈ K2. It then follows

from (4) that ‖∇2f(xk)‖ ≤ UH for all k ∈ K2.

(i) Suppose for contradiction that the total number of iterations of Algorithm 2 is more than K2. Recall from

Theorem 3 that γk ≤ γ̄ν(ǫ) holds for all k ∈ K2. It then follows from Algorithm 2 and Lemmas 7 and 8 that

18

each iteration except the last one results in a reduction on the function value of f at least by ǫ3/2/(72γ̄ν(ǫ)
1/2).

Hence,

K2ǫ
3/2/(72γ̄ν(ǫ)

1/2) ≤
∑

k∈K2

[f(xk)− f(xk+1)] ≤ f(x0)− flow,

which contradicts (22). Therefore, the total number of iterations of Algorithm 2 is at most K2.

(ii) From statement (i), we see that Algorithm 2 terminates at some iterationK satisfying K ≤ K2. It follows

from Algorithm 2 and Lemmas 7 and 8 that the kth iteration with k < K of Algorithm 2 results in a reduction

on the function value of f at least by ǫ3/2/(72γ
1/2
k). Hence,

∑K−2
k=0 ǫ3/2/(72γ

1/2
k) ≤∑K−2

k=0 [f(xk)− f(xk+1)] ≤
f(x0)−flow, which then implies that

∑K−2
k=0 1/γ

1/2
k ≤ 72(f(x0)−flow)ǫ−3/2. Using this and the Cauchy-Schwarz

inequality, we deduce that

(
K−2∑

k=0

1/γ
1/4
k

)2

≤
(

K−2∑

k=0

1/γ
1/2
k

)
(K − 1) ≤ 72(f(x0)− flow)ǫ

−3/2(K − 1). (62)

On the other hand, notice that γ̃t ≥ γ̃0 = max{γ−1, γk−1/θ} for all γ̃t generated at iteration k of Algorithm 2.

In view of this, ‖∇2f(xk)‖ ≤ UH , and Theorem 3, we can see that the number of gradient evaluations and

Hessian-vector products of f required by one call of Algorithm 4 with (H, ε, g) = (∇2f(xk), (γ̃tǫ)
1/2,∇f(xk))

at iteration k of Algorithm 2 is bounded above by

min

{
n,

⌈(√
UH

(γ̃tǫ)1/2
+ 2

)
ψ

(
UH

(γ̃tǫ)1/2

)⌉}
≤ min

{
n,

(√
UH

(γk−1ǫ/θ)1/2
+ 2

)
ψ

(
UH

(γ−1ǫ)1/2

)
+ 1

}
.

where the inequality follows from γ̃t ≥ max{γ−1, γk−1/θ} and the monotonicity of ψ. Recall from Theorem 3,

the number of calls of Algorithm 4 at iteration k of Algorithm 2 is at most T . Combining these, we obtain that

the total number of gradient evaluations and Hessian-vector products of f required by Algorithm 2 is bounded

by

K−1∑

k=0

T min

{
n,

(√
UH

(γk−1ǫ/θ)1/2
+ 2

)
ψ

(
UH

(γ−1ǫ)1/2

)
+ 1

}

≤ T min

{
nK,

K−1∑

k=0

[(√
UH

(γk−1ǫ/θ)1/2
+ 2

)
ψ

(
UH

(γ−1ǫ)1/2

)
+ 1

]}

= T min

{
nK,ψ

(
UH

(γ−1ǫ)1/2

)
U

1/2
H

(ǫ/θ)1/4

K−1∑

k=0

1

γ
1/4
k−1

+

[
2ψ

(
UH

(γ−1ǫ)1/2

)
+ 1

]
K

}

= Õ
(
T min

{
nK, ǫ−1/4

(
K−1∑

k=0

1/γ
1/4
k−1

)
+K

})
= Õ(T min{nK, ǫ−1K1/2 +K}), (63)

where the first inequality is due to min{a1, a2} + min{b1, b2} ≤ min{a1 + a2, b1 + b2} for all a1, a2, b1, b2 ∈ R,

the second equality follows from the definition of ψ in Theorem 7, and the last equality is due to

K−1∑

k=0

1/γ
1/4
k−1 = 1/γ

1/4
−1 +

K−2∑

k=0

1/γ
1/4
k

(62)

≤ 1/γ
1/4
−1 +

√
72f(x0 − flow)ǫ−3/2(K − 1).

It then follows from (63) and K ≤ K2 that the conclusion of the statement (ii) holds.

7.3 Proof of the main results in Section 5

In this subsection, we provide a proof of Theorems 5 and 6.

We first provide a proof of Theorem 5.

19

Proof of Theorem 5. We prove this theorem by induction. Let xk, xk+1 be two consecutive iterates generated

by Algorithm 3, and suppose that {f(xℓ)}0≤ℓ≤k is nonincreasing. We next prove f(xk+1) ≤ f(xk). By similar

arguments as those used in Theorem 1, we see that f(xk+1) ≤ f(xk) when xk+1 is generated by αk and dk

resulting from the outputs of Algorithm 4. Thus, it remains to show that f(xk+1) ≤ f(xk) when xk+1 is

generated by αk and dk resulting from the outputs of Algorithm 5. Suppose for contradiction that f(xk+1) =

f(xk + αkd
k) > f(xk) in this case. Let ϕ(α) = f(xk + αdk). Then ϕ(αk) > ϕ(0). Since dk results from the

output v of Algorithm 5, we see from Algorithm 3 that

∇f(xk)T dk ≤ 0, (dk)T∇2f(xk)dk/‖dk‖2 = −‖dk‖ ≤ −ǫH/2 < 0. (64)

By this and the definition of ϕ, we see that ϕ′(0) = ∇f(xk)Tdk ≤ 0 and ϕ′′(0) = (dk)T∇2f(xk)dk < 0. Since

ϕ(αk) > ϕ(0), it then follows that there exists a local minimizer α∗ ∈ (0, αk) of ϕ such that ϕ(α∗) < ϕ(0). By

the second order optimality condition of ϕ at α∗, we have ϕ
′′(α∗) = (dk)T∇2f(xk+α∗d

k)dk ≥ 0. In addition, by

f(xk) ≤ f(x0) and ϕ(α∗) < ϕ(0), one has f(xk+α∗d
k) < f(x0). Hence, (4) holds for x = xk and y = xk+α∗d

k.

By these, we obtain that

Hνα
ν
∗‖dk‖2+ν ≥ ‖dk‖2‖∇2f(xk + α∗d

k)−∇2f(xk)‖ ≥ (dk)T (∇2f(xk + α∗d
k)−∇2f(xk))dk

≥ − (dk)T∇2f(xk)dk = ‖dk‖3.

Recall from (64) that ‖dk‖ ≥ ǫH/2. It then follows from the above inequality, dk 6= 0 and αk > α∗ that

αk > α∗ ≥ H
−1/ν
ν (ǫH/2)

(1−ν)/ν, which contradicts the definition of αk in (26).

The following lemma shows that when the search direction dk in Algorithm 3 is a negative curvature direction

returns from Algorithm 5, the next iterate xk+1 produces a sufficient reduction in f .

Lemma 9. Suppose that Assumption 1 holds with ν ∈ (0, 1] and the direction dk results from the output v of

Algorithm 5 at some iteration k of Algorithm 3. Then xk+1 = xk + αkd
k satisfies

f(xk)− f(xk+1) ≥ (ǫH/2)
(2+ν)/ν

4(2Hν)2/ν
. (65)

Proof. Since dk results from the output v of Algorithm 5, we see from Algorithm 3 that (64). Notice from

Theorem 5 that f(xk + αkd
k) ≤ f(xk) ≤ f(x0). Hence, (6) holds for x = xk and y = xk + αkd

k. By this and

(64), one has

f(xk+1)− f(xk)
(6)

≤ αk∇f(xk)Tdk +
α2
k

2
(dk)T∇2f(xk)dk +

Hνα
2+ν
k ‖dk‖2+ν

(1 + ν)(2 + ν)

(64)

≤ − α2
k

2
‖dk‖3 + Hν

2
α2+ν
k ‖dk‖2+ν = −α

2
k

2
‖dk‖3 + α2

k

4

(ǫH
2

)1−ν

‖dk‖2+ν

≤ − α2
k

4
‖dk‖3 ≤ − (ǫH/2)

(2+ν)/ν

4(2Hν)2/ν
,

where the third inequality is due to ‖dk‖ ≥ ǫH/2, and the last inequality follows from ‖dk‖ ≥ ǫH/2 and the

definition of αk in (26). Hence, the inequality (65) holds as desired.

We are now ready to provide a proof of Theorem 6.

Proof of Theorem 6. Recall from Theorem 5 that f is nonincreasing along the iterates {xk}k∈K3 generated by

Algorithm 3. Thus, xk ∈ {x : f(x) ≤ f(x0)}. It then follows from (4) that ‖∇2f(xk)‖ ≤ UH for all k ∈ K3. In

addition, observe that Algorithm 3 proceeds in the same manner as Algorithm 1 when ‖∇f(xk)‖ > ǫg at some

iteration k. Therefore, at such iteration k, we have that Lemmas 4 and 5 hold with ǫ replaced by ǫg.

(i) Suppose for contradiction that the total number of calls of Algorithm 5 in Algorithm 3 is more than K̃2.

Notice from Algorithm 3 and Lemma 9 that each of these calls except the last one, returns a sufficiently negative

curvature direction, and each of them results in a reduction on f of at least (ǫH/2)
(2+ν)/ν/[4(2Hν)

2/ν]. Hence,

K̃2(ǫH/2)
(2+ν)/ν/[4(2Hν)

2/ν] ≤
∑

k∈K3

[f(xk)− f(xk+1)] ≤ f(x0)− flow,

20

which contradicts the definition of K̃2 given in (28). Hence, statement (i) holds.

(ii) Suppose for contradiction that the total number of calls of Algorithm 4 in Algorithm 3 is more than

K̃1. Observe that if Algorithm 4 is called at some iteration k and generates the next iterate xk+1 satisfying

‖∇f(xk+1)‖ ≤ ǫg, then Algorithm 5 must be called at the next iteration k + 1. In view of this and statement

(i), we see that the total number of such iterations k is at most K̃2. Hence, the total number of iterations k of

Algorithm 3 at which Algorithm 4 is called and generates the next iterate xk+1 satisfying ‖∇f(xk+1)‖ > ǫg is

at least K̃1 − K̃2 +1. Moreover, for each of such iterations k, we observe from Lemmas 4 and 5 with ǫ replaced

by ǫg that f(xk)− f(xk+1) ≥ ǫ
3/2
g /[144γν(ǫg)]. It then follows that

(K̃1 − K̃2 + 1)ǫ3/2g /[144γν(ǫg)] ≤
∑

k∈K3

[f(xk)− f(xk+1)] ≤ f(x0)− flow,

which contradicts the definition of K̃1 and K̃2 given in (27) and (28), respectively.

(iii) Notice that either Algorithm 4 or Algorithm 5 is called at each iteration of Algorithm 3. It follows

from this and statements (i) and (ii) that the total number of iterations of Algorithm 3 is at most K̃1 + K̃2. In

addition, one can also easily observe that the output xk of Algorithm 3 satisfies ‖∇f(xk)‖ ≤ ǫg deterministically

and λmin(∇2f(xk)) ≥ −ǫH with probability at least 1 − δ for some 0 ≤ k ≤ K̃1 + K̃2, where the latter part is

due to Algorithm 5. Hence, statement (iii) holds as desired.

(iv) By Theorem 7 with (H, ε) = (∇2f(xk),
√
γν(ǫg)ǫg) and the fact that ‖∇2f(xk)‖ ≤ UH , we observe that

the number of gradient evaluations and Hessian-vector products of f required by each call of Algorithm 4 with

input U = 0 is at most Õ(min{n, [γν(ǫg)ǫg]−1/4}). In addition, by Theorem 8 with (H, ε) = (∇2f(xk), ǫH),

‖∇2f(xk)‖ ≤ UH , and the fact that each iteration of the Lanczos method requires only one matrix-vector

product, one can observe that the number of Hessian-vector products of f required by each call of Algorithm 5

is also at most Õ(min{n, ǫ−1/2
H }). Based on these and statement (iii), we see that statement (iv) holds.

8 Future work

There are several possible extensions of this work. First, it would be interesting to study the iteration and

operation complexity of second-order methods for nonconvex constrained optimization with Hölder continuous

Hessian. Second, more numerical studies would be helpful to further improve the proposed Newton-CG methods

from a practical perspective. Lastly, the development of a parameter-free method that achieves the best-known

iteration and operation complexity bounds for finding an approximate SOSP of problem (1) remains an open

question.

References

[1] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma. Finding approximate local minima faster than

gradient descent. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,

pages 1195–1199, 2017.

[2] Z. Allen-Zhu and Y. Li. Neon2: Finding local minima via first-order oracles. Advances in Neural Information

Processing Systems, 31, 2018.

[3] A. E. Beaton and J. W. Tukey. The fitting of power series, meaning polynomials, illustrated on band-

spectroscopic data. Technometrics, 16(2):147–185, 1974.

[4] E. G. Birgin and J. M. Mart́ınez. The use of quadratic regularization with a cubic descent condition for

unconstrained optimization. SIAM J. Optim., 27(2):1049–1074, 2017.

[5] R. H. Byrd, F. E. Curtis, and J. Nocedal. Infeasibility detection and SQP methods for nonlinear optimiza-

tion. SIAM J. Optim., 20(5):2281–2299, 2010.

[6] Y. Carmon and J. Duchi. Gradient descent finds the cubic-regularized nonconvex Newton step. SIAM J.

Optim., 29(3):2146–2178, 2019.

21

[7] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. “Convex until proven guilty”: Dimension-free acceler-

ation of gradient descent on non-convex functions. In International conference on machine learning, pages

654–663. PMLR, 2017.

[8] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Accelerated methods for nonconvex optimization.

SIAM J. Optim., 28(2):1751–1772, 2018.

[9] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary points I. Math.

Program., 184(1-2):71–120, 2020.

[10] C. Cartis, N. I. Gould, and P. L. Toint. Adaptive cubic regularisation methods for unconstrained optimiza-

tion. part i: motivation, convergence and numerical results. Math. Program., 127(2):245–295, 2011.

[11] C. Cartis, N. I. Gould, and P. L. Toint. Worst-case evaluation complexity and optimality of second-order

methods for nonconvex smooth optimization. In Proceedings of the International Congress of Mathemati-

cians: Rio de Janeiro 2018, pages 3711–3750. World Scientific, 2018.

[12] F. E. Curtis, D. P. Robinson, C. W. Royer, and S. J. Wright. Trust-region Newton-CG with strong

second-order complexity guarantees for nonconvex optimization. SIAM J. Optim., 31(1):518–544, 2021.

[13] F. E. Curtis, D. P. Robinson, and M. Samadi. A trust region algorithm with a worst-case iteration

complexity of O(ǫ−3/2) for nonconvex optimization. Math. Program., 162:1–32, 2017.

[14] F. E. Curtis, D. P. Robinson, and M. Samadi. An inexact regularized Newton framework with a worst-case

iteration complexity of O(ǫ−3/2) for nonconvex optimization. IMA J. Numer. Anal., 39(3):1296–1327, 2019.

[15] P. Dvurechensky. Gradient method with inexact oracle for composite non-convex optimization. arXiv

preprint arXiv:1703.09180, 2017.

[16] G. N. Grapiglia and Y. Nesterov. Regularized Newton methods for minimizing functions with Hölder

continuous Hessians. SIAM J. Optim., 27(1):478–506, 2017.

[17] C. He, Z. Lu, and T. K. Pong. A newton-cg based augmented lagrangian method for finding a second-

order stationary point of nonconvex equality constrained optimization with complexity guarantees. arXiv

preprint arXiv:2301.03139, 2023.

[18] M. Ito, Z. Lu, and C. He. A parameter-free conditional gradient method for composite minimization under

Hölder condition. Journal of Machine Learning Research, 24:1–34, 2023.

[19] C. Jin, P. Netrapalli, and M. I. Jordan. Accelerated gradient descent escapes saddle points faster than

gradient descent. In Conference On Learning Theory, pages 1042–1085. PMLR, 2018.

[20] J. Kuczyński and H. Woźniakowski. Estimating the largest eigenvalue by the power and Lanczos algorithms

with a random start. SIAM J. Matrix Anal. Appl., 13(4):1094–1122, 1992.

[21] B. Li, S. Tang, and H. Yu. Better approximations of high dimensional smooth functions by deep neural

networks with rectified power units. arXiv preprint arXiv:1903.05858, 2019.

[22] H. Li and Z. Lin. Restarted nonconvex accelerated gradient descent: No more polylogarithmic factor in

the O(ǫ−7/4) complexity. In International Conference on Machine Learning, pages 12901–12916. PMLR,

2022.

[23] J. M. Mart́ınez and M. Raydan. Cubic-regularization counterpart of a variable-norm trust-region method

for unconstrained minimization. J. Glob. Optim., 68:367–385, 2017.

[24] N. Marumo and A. Takeda. Parameter-free accelerated gradient descent for nonconvex minimization. arXiv

preprint arXiv:2212.06410, 2022.

22

[25] Y. Nesterov. Universal gradient methods for convex optimization problems. Math. Program., 152(1-2):381–

404, 2015.

[26] Y. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global performance. Math.

Program., 108(1):177–205, 2006.

[27] M. O’Neill and S. J. Wright. A log-barrier Newton-CG method for bound constrained optimization with

complexity guarantees. IMA J. Numer. Anal., 41(1):84–121, 2021.

[28] C. W. Royer, M. O’Neill, and S. J. Wright. A Newton-CG algorithm with complexity guarantees for smooth

unconstrained optimization. Math. Program., 180(1-2):451–488, 2020.

[29] C. W. Royer and S. J. Wright. Complexity analysis of second-order line-search algorithms for smooth

nonconvex optimization. SIAM J. Optim., 28(2):1448–1477, 2018.

[30] Y. Xu, R. Jin, and T. Yang. Neon+: Accelerated gradient methods for extracting negative curvature for

non-convex optimization. arXiv preprint arXiv:1712.01033, 2017.

[31] C. Zhang and R. Jiang. Riemannian adaptive regularized Newton methods with Hölder continuous Hessians.

arXiv preprint arXiv:2309.04052, 2023.

Appendix

A A capped conjugate gradient method

In this part we present the capped CG method proposed in [28, Algorithm 1] for finding either an approximate

solution to the linear system (7) or a sufficiently negative curvature direction of the associated matrix H , which

has been briefly discussed in Section 3. Its details can be found in [28, Section 3.1].

The following theorem presents the iteration complexity of Algorithm 4.

Theorem 7 (iteration complexity of Algorithm 4). Consider applying Algorithm 4 with input U = 0 to

the linear system (7) with g 6= 0, ε > 0, and H being an n×n symmetric matrix. Then the number of iterations

of Algorithm 4 is at most

min
{
n,
⌈(√

‖H‖/ε+ 2
)
ψ (‖H‖/ε)

⌉}
= Õ(min{n,

√
‖H‖/ε}),

where ψ(t) = ln(144(
√
t+ 2 + 1)2(t+ 2)6/ζ2).

Proof. From [28, Lemma 1], we know that the number of iterations of Algorithm 4 is bounded by min{n, J(U, ε, ζ)},
where J(U, ε, ζ) is the smallest integer J such that

√
TτJ/2 ≤ ζ̂, with U, ζ̂, T and τ being the values returned by

Algorithm 4. In addition, it was shown in [28, Section 3.1] that J(U, ε, ζ) ≤
⌈
(
√
κ+ 1/2) ln

(
144(

√
κ+ 1)2κ6/ζ2

)⌉
,

where κ = U/ε+ 2 is an output by Algorithm 4. Also, observe that
√
κ ≤

√
U/ε +

√
2 ≤

√
U/ε + 3/2. Com-

bining these, we obtain that J(U, ε, ζ) ≤
⌈(√

U/ε+ 2
)
ln
(
144(

√
U/ε+ 2 + 1)2(U/ε+ 2)6/ζ2

)⌉
. Notice from

Algorithm 4 that the output U ≤ ‖H‖. Using these, we obtain that the conclusion holds as desired.

B A randomized Lanczos based minimum eigenvalue oracle

In this part we present the randomized Lanczos method proposed in [28, Section 3.2], which can be used as

a minimum eigenvalue oracle for Algorithm 2. As briefly discussed in Section 5, this oracle outputs either a

sufficiently negative curvature direction of H or a certificate that H is nearly positive semidefinite with high

probability. More detailed motivation and explanation of it can be found in [28, Section 3.2].

The following theorem justifies that Algorithm 5 is a suitable minimum eigenvalue oracle for Algorithm 2.

Its proof is identical to that of [28, Lemma 2] and thus omitted.

23

Algorithm 4 A capped conjugate gradient method

Inputs: symmetric matrix H ∈ R
n×n, vector g 6= 0, damping parameter ε > 0, desired relative accuracy ζ ∈ (0, 1).

Optional input: scalar U ≥ 0 (set to 0 if not provided).

Outputs: d type, d.

Secondary outputs: final values of U, κ, ζ̂, τ, and T .

Set

H̄ := H + 2εI, κ :=
U + 2ε

ε
, ζ̂ :=

ζ

3κ
, τ :=

√
κ√

κ+ 1
, T :=

4κ4

(1 −√τ)2
,

y0 ← 0, r0 ← g, p0 ← −g, j ← 0.

if (p0)T H̄p0 < ε‖p0‖2 then

Set d← p0 and terminate with d type = NC;

else if ‖Hp0‖ > U‖p0‖ then

Set U ← ‖Hp0‖/‖p0‖ and update κ, ζ̂, τ, T accordingly;

end if

while TRUE do

αj ← (rj)T rj/(pj)T H̄pj ; {Begin Standard CG Operations}
yj+1 ← yj + αjp

j ;

rj+1 ← rj + αjH̄pj ;

βj+1 ← ‖rj+1‖2/‖rj‖2;
pj+1 ← −rj+1 + βj+1p

j ; {End Standard CG Operations}
j ← j + 1;

if ‖Hpj‖ > U‖pj‖ then
Set U ← ‖Hpj‖/‖pj‖ and update κ, ζ̂, τ, T accordingly;

end if

if ‖Hyj‖ > U‖yj‖ then

Set U ← ‖Hyj‖/‖yj‖ and update κ, ζ̂, τ, T accordingly;

end if

if ‖Hrj‖ > U‖rj‖ then

Set U ← ‖Hrj‖/‖rj‖ and update κ, ζ̂, τ, T accordingly;

end if

if (yj)T H̄yj < ε‖yj‖2 then

Set d← yj and terminate with d type = NC;

else if ‖rj‖ ≤ ζ̂‖r0‖ then
Set d← yj and terminate with d type = SOL;

else if (pj)T H̄pj < ε‖pj‖2 then

Set d← pj and terminate with d type = NC;

else if ‖rj‖ >
√
Tτ j/2‖r0‖ then

Compute αj , y
j+1 as in the main loop above;

Find i ∈ {0, . . . , j − 1} such that

(yj+1 − yi)T H̄(yj+1 − yi) < ε‖yj+1 − yi‖2;

Set d← yj+1 − yi and terminate with d type = NC;

end if

end while

Theorem 8 (iteration complexity of Algorithm 5). Consider Algorithm 5 with tolerance ε > 0, probability

parameter δ ∈ (0, 1), and symmetric matrix H ∈ R
n×n as its input. Then it either finds a sufficiently negative

curvature direction v satisfying vTHv ≤ −ε/2 and ‖v‖ = 1 or certifies that λmin(H) ≥ −ε holds with probability

at least 1− δ in at most N(ε, δ) iterations, where N(ε, δ) is defined in (66).

Notice that ‖H‖ is required in Algorithm 5. In general, computing ‖H‖ may not be cheap when n is large.

Nevertheless, ‖H‖ can be efficiently estimated via a randomization scheme with high confidence (e.g., see the

discussion in [28, Appendix B3]).

24

Algorithm 5 A randomized Lanczos based minimum eigenvalue oracle

Input : symmetric matrix H ∈ R
n×n, tolerance ε > 0, and probability parameter δ ∈ (0, 1).

Output: a sufficiently negative curvature direction v satisfying vTHv ≤ −ε/2 and ‖v‖ = 1; or a certificate that λmin(H) ≥

−ε with probability at least 1− δ.

Apply the Lanczos method [20] to estimate λmin(H) starting with a random vector uniformly generated on the unit

sphere, and run it for at most

N(ε, δ) := min

{

n, 1 +

⌈

ln(2.75n/δ2)

2

√

‖H‖

ε

⌉}

(66)

iterations. If a unit vector v with vTHv ≤ −ε/2 is found at some iteration, terminate immediately and return v.

25

	Introduction
	Notation and assumptions
	A Newton-CG method for seeking an FOSP
	A parameter-free Newton-CG method for seeking an FOSP
	A Newton-CG method for seeking an SOSP
	Numerical results
	Infeasibility detection
	Single-layer neural networks

	Proof of the main results
	Proof of the main results in Section 3
	Proof of the main results in Section 4
	Proof of the main results in Section 5

	Future work
	A capped conjugate gradient method
	A randomized Lanczos based minimum eigenvalue oracle

